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ABSTRACT The Dirac equation is presented as a complete theory of the electron as a gyromagnetic particle
clock with precise physical interpretation for all degrees of freedom. The electron is modeled as a point
charge with toroidal zitter and variable zilch. That is to say, the charge oscillates at the speed of light on
a torus centered on a circular orbit around its center of mass z = z(t), with an axis at a variable angle
β = β(z(t)) with respect to its spin vector s = s(t). The Dirac wave function Ψ = Ψ(ct + x) has a unique
factorizationΨ = (ρeiβ)

1
2U , whereU = U(ct+x) is a spatial rotor with magnetic degrees of freedom, and

the quantity ΨΨ̃ = ρeiβ specifies an embedding of electron paths in the vacuum, where the zilch function
β = β(ct + x − z(t)) is a measure of electron energy density. It culminates in a new synthesis of Dirac
electron theory with Maxwell’s electrodynamics by identifying zilch as a common factor that binds them
together.

INDEX TERMS Dirac equation, pilot waves, spacetime algebra, zilch, zitter, zitterbewegung

I. INTRODUCTION
This paper encapsulates a long term research project to in-
corporate de Broglie’s idea of the electron as a particle clock
into the interpretation of Dirac’s equation and study its im-
plications. The project began in 1966 with the book Space
Time Algebra [1], which laid out the essential mathematical
insights that have guided robust development to this day.
It aims to revitalize de Broglie’s idea of an electron clock
by giving it a central role in physical interpretation of the
Dirac wave function. In particular, it aims for insight into
structure of the wave function and fibrations of particle paths
it determines. This opens up new questions about physical
interpretation.

We begin in Section II with a synopsis of Spacetime Al-
gebra (STA), which is an essential tool in all that follows,
especially because it provides a geometric interpretation for
the role of complex numbers in quantum mechanics.

Section III is the theoretical core of this report. It applies
STA in a review of real Dirac theory and presents a new
analysis of its physical interpretation in terms of local ob-
servables. That provides the context to introduce de Broglie’s
clock as central to physical interpretation of the Dirac wave
function.

Section IV presents a complete formulation and analysis
of conservation laws in Dirac theory in terms of local ob-
servables, including details that are generally overlooked in
literature and the problematic role of the parameter β in the
Dirac wave function. That establishes a foundation for a new
synthesis of electron theory with electrodynamics developed
below.

Section V discusses a new approach to Born’s statistical
interpretation of the Dirac wave function dubbed the Born-
Dirac theory. It includes a relativistic extension of de Broglie-
Bohm pilot wave theory to interpret the Dirac wave function
as describing a fibration (or ensemble) of possible particle
paths. Spin dependence of the so-called quantum potential
is made explicit and generalized. More details are given in
references cited in this Section, which have been carefully se-
lected for quality and compatibility with the present approach
to Dirac theory. They offer a rich store of ideas and results
worth exploring both theoretically and experimentally.
Section V closes with a sudden realization that β can be

given a clear physical interpretation as a chirality parameter.
That proves to be a game changer! It enables in Section VI
a complete and coherent formulation and physical interpreta-
tion for all parameters in the Dirac equationwithout exception
or approximation. Let us call that synthesis the Zitter Particle
Model (ZPM), because it incorporates Schrödinger’s concept
of zitterbewegung into a particle model of the electron with
light-like helical motion called zitter. We identify it with the
physical mechanism in de Broglie’s particle clock.
Section VI presents the zitter Dirac equation as the center-

piece of the ZPM, because it presents a reformulation of the
Dirac equation in terms of local observables, which are open
to direct physical interpretation and analysis. That provides
a unified framework for any application of the Dirac theory.
In particular, it shows how the canonical momentum provides
quantum numbers for any quantized electron state. And it sup-
ports derivation of an extended Lorentz force, which explains
how photons are emitted when electrons are accelerated.
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Section VII provides the capstone for a unified Maxwell-
Dirac electron theory by recognizing that the zilch angle in
the Dirac wave function can be identified with the zilch pa-
rameter in an invariant decomposition of the electromagnetic
field.

New elementary solutions of the Dirac equation are iden-
tified as zilch signals in the vacuum and proposed as com-
ponents of Maxwell’s famous displacement current! Then,
refining arguments by de Broglie, an alternative solution is
proposed to explain how photons are produced by accelerated
electrons.

Section VIII presents the electron as a point singularity
with mass stored as energy in the vacuum. In agreement with
Dirac [2], this calls for revitalization of the classical concept
of aether as a substrate for the vacuum. We identify that
substrate as none other than the scalar-valued zilch function
that spans all of spacetime, wherein electron (and positron)
paths are embedded as singularities along with zilch signals.
Details will be discussed at greater length in a subsequent
paper.

Section IX reformulates the zitter Dirac equation as an
ordinary differential equation for a point particle embedded in
the zilch vacuum field described byMaxwell’s equation. This
provides a framework for solving many problems in physics,
including atomic structure, radiative reaction, electron and
photon diffraction, and gravo-magnetic interaction.

We conclude in Section X with a coda arguing for a realist
interpretation of particle paths embedded in the Dirac wave
function. With a salute to Roget Boudet as a paragon of
intellectual probity in the mathematical sciences.

II. SPACETIME ALGEBRA
Spacetime Algebra (STA) plays an essential role in the for-
mulation and analysis of electron theory in this paper. Since
thorough expositions of STA are available in many places
[1], [3], [4], a brief description will suffice here, mainly to
establish notations and define terms.

Note that STA is an associative algebra generated by space-
time vectors with the property that the square of any vector is
a (real) scalar. Thus for any vector a we can write

a2 = aa = ε|a|2 , (1)

where ε is the signature of a and |a| is a positive scalar. As
usual, we say that a is timelike, lightlike or spacelike if its
signature is positive (ε = 1), null (ε = 0), or negative (ε =
−1).

From the geometric product ab of two vectors it is conve-
nient to define two other products. The inner product a · b is
defined by

a · b = 1
2 (ab+ ba) = b · a , (2)

while the outer product a ∧ b is defined by

a ∧ b = 1
2 (ab− ba) = −b ∧ a . (3)

The three products are therefore related by

ab = a · b+ a ∧ b . (4)

This can be regarded as a decomposition of the product ab
into symmetric and skewsymmetric parts, or alternatively,
into scalar and bivector parts.
For physicists unfamiliar with STA, it will be helpful to

note its isomorphism to Dirac algebra over the reals. To that
end, let {γµ; 0, 1, 2, 3} be a right-handed orthonormal frame
of vectors with γ0 in the forward light cone. The symbols γµ
have been selected to emphasize direct correspondence with
Dirac’s γ-matrices. In accordance with (2), the components
gµν of the metric tensor are given by

gµν = γµ · γν = 1
2 (γµγν + γνγµ) . (5)

This will be recognized as isomorphic to a famous formula
of Dirac’s. Of course, the difference here is that the γµ are
vectors rather than matrices.
The unit pseudoscalar i for spacetime is related to the frame

{γν} by the equation

i = γ0γ1γ2γ3 = γ0 ∧ γ1 ∧ γ2 ∧ γ3 . (6)

It is readily verified from (6) that i2 = −1, and the geometric
product of i with any vector is anticommutative.
By multiplication the γµ generate a complete basis of k-

vectors for STA, consisting of the 24 = 16 linearly indepen-
dent elements

1, γµ, γµ ∧ γν , γµi, i . (7)

Obviously, this set corresponds to 16 base matrices for the
Dirac algebra, with the pseudoscalar i corresponding to the
Dirac matrix γ5.
The entire spacetime algebra is obtained from linear com-

binations of basis k-vectors in (7). A generic elementM of the
STA, called amultivector, can thus be written in the expanded
form

M = α+ a+ F + bi+ βi =
4∑

k=0

⟨M⟩k , (8)

where α and β are scalars, a and b are vectors, and F is a
bivector. This is a decomposition ofM into its k-vector parts,
with k = 0, 1, 2, 3, 4, where ⟨. . .⟩k means ‘k vector part.’ Of
course, ⟨M⟩0 = α, ⟨M⟩1 = a, ⟨M⟩2 = F , ⟨M⟩3 = bi,
⟨M⟩4 = βi. It is often convenient to drop the subscript on
the scalar part, writing ⟨M⟩ = ⟨M⟩0.
We say that a k-vector is even (odd) if the integer k is even

(odd). Accordingly, any multivector can be expressed as the
sum of even and odd parts. A multivector is said to be ‘even’
if its parts are even k-vectors. The even multivectors compose
a subalgebra of the STA.Wewill be using the fact that spinors
can be represented as even multivectors.
Computations are facilitated by the operation of reversion.

ForM in the expanded form (8) the reverse M̃ can be defined
by

M̃ = α+ a− F − bi+ βi . (9)

For arbitrary multivectors M and N

(̃MN ) = Ñ M̃ . (10)
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It is useful to extend the definitions of inner and outer
products to multivectors of higher grade. Thus, for bivector
F and vector a we can define inner and outer products

F · a = 1
2 (Fa− aF), (11)

F ∧ a = 1
2 (Fa+ aF), (12)

so that
Fa = F · a+ F ∧ a (13)

expresses a decomposition ofFa into vector and pseudovector
parts. For F = b ∧ c it follows that

(b ∧ c) · a = b(c · a)− c(b · a) . (14)

Many other useful identities can be derived to facilitate
coordinate-free computations. They will be introduced as
needed throughout the paper.

Any fixed timelike vector such as {γ0} defines an inertial
frame that determines a unique separation between space and
time directions. Algebraically, this can be expressed as the
‘‘spacetime split" of each vector x designating a spacetime
point (or event) into a time component x ·γ0 = ct and a spatial
position vector x ≡ x ∧ γ0 as specified by the geometric
product

xγ0 = ct + x . (15)

We call this a γ0-split when it is important to specify the
generating vector. The resulting quantity ct + x is called a
paravector.

This ‘split’ maps a spacetime vector into the STA subalge-
bra of even multivectors where, by ‘regrading,’ the bivector
part can be identified as a spatial vector. Accordingly, the
even subalgebra is generated by a frame of ‘spatial vectors’
{σk ≡ γkγ0; k = 1, 2, 3}, so that

σ1σ2σ3 = γ0γ1γ2γ3 = i. (16)

Obviously, this rendition of the STA even subalgebra is iso-
morphic to the Pauli algebra, though the Pauli algebra is
not a subalgebra of the Dirac algebra because the matrix
dimensions are different.

We use boldface letters exclusively to denote spatial vec-
tors determined by a spacetime split. Spatial vectors generate
a coordinate-free spatial geometric algebra with the geomet-
ric product

ab = a · b+ a ∧ b = a · b+ ia× b, (17)

where a× b = −i(a ∧ b) is the usual vector cross product.
For the even part ⟨M⟩+ = Q of the multivector M , a

spacetime split gives us

Q = z+ F , (18)

where scalar and pseudoscalar parts combine in the form of a
complex number

z = α+ iβ, (19)

and the bivector part splits into the form of a ‘complex vector’

F = E+ iB = −F̃ . (20)

Thus, the even subalgebra in STA has the formal structure
of complex quaternions. However, the geometric interpreta-
tion of the elements is decidedly different from the usual
one assigned to quaternions. Specifically, the bivector iB
corresponds to a ‘real vector’ in the quaternion literature.
This difference stems from a failure to distinguish between
vectors and bivectors dating back to Hamilton. For complex
quaternions, it reduces to failure to identify the imaginary
unit i as a pseudoscalar. Geometric interpretation is crucial
for application of quaternions in physics.

Reversion in the subalgebra is defined by

Q† ≡ γ0Q̃γ0. (21)

This is equivalent to ‘complex conjugation’ of quaternions. In
particular,

F† ≡ γ0F̃γ0 = E− iB, (22)

so that

E = 1
2 (F + F†), iB = 1

2 (F − F†). (23)

Moreover,
FF† = E2 +B2 + 2E×B, (24)

F2 = F · F + F ∧ F = E2 −B2 + 2́iE ·B, (25)

which are familiar expressions from electrodynamics. The
bivector F is said to be simple if

F ∧ F = 0 ⇔ E ·B = 0, (26)

and is said to be timelike, spacelike or null, respectively, when
F2 = E2 −B2 is positive, negative or zero.
Sometimes it is convenient to decompose the geometric

product FG into symmetric and antisymmetric parts

FG = F ◦ G+ F × G, (27)

where the symmetric product is defined by

F ◦ G ≡ 1
2 (FG+ GF), (28)

and the commutator product is defined by

F × G ≡ 1
2 (FG− GF). (29)

In particular, for quaternions the symmetric product serves
as a ‘complex inner product,’ while the commutator product
serves as an ‘outer product for complex vectors.’ Comparison
with (17) shows that for ‘real vectors’

a ◦ b = a · b (30)

and
a× b = a ∧ b = i(a× b). (31)

Note that the cross product on the right is distinguished
from the commutator product on the left of this equation
by a boldface of the cross product symbol. Also, it should
be understood that the equivalence of commutator and outer
products in this equation does not generally obtain for arbi-
trary multivectors.
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Concerning the spacetime split of products between even
and odd multivectors, for a bivector F = E + iB and
spacetime vector a with the split aγ0 = a0 + a, we have

(F · a)γ0 = E · a+ a0E+ a×B. (32)

This may be recognized as the form for a spacetime split of
the classical Lorentz force. We will use it as a template for
other spacetime splits later on.

Concerning differentiation, the derivative with respect to
anymultivector variableM is denoted by ∂M , so the derivative
with respect to a vector variable n is denoted by ∂n. As the
derivative with respect to a position vector x is especially
important, we distinguish it with the special symbol

∇ ≡ ∂x = σk∂k , (33)

in agreement with standard vector calculus. Thus, for a rela-
tive vector field A = A(x) The identity (17) gives us

∇A = ∇ ·A+∇ ∧A = ∇ ·A+ i∇×A, (34)

which relates the curl to the standard vector cross product.
For field theory, the derivative with respect to a spacetime

point must be defined. Though that can be done in a com-
pletely coordinate-free way [3], for a rapid survey it is more
expedient here to exploit the reader’s prior knowledge about
partial derivatives.

For each spacetime point x the reciprocal of a standard
frame {γµ} determines a set of ‘rectangular coordinates’
{xµ} given by

xµ = γµ · x and x = xµγµ . (35)

In terms of these coordinates the derivative with respect to a
spacetime point x is an operator □ defined by

□ ≡ ∂x = γµ∂µ, (36)

where ∂µ is given by

∂µ =
∂

∂xµ
= γµ ·□ . (37)

The square of □ is the usual d’Alembertian

□2 = gµν∂µ∂ν where gµν = γµ · γν . (38)

The matrix representation of the vector derivative □ will
be recognized as the so-called ‘Dirac operator,’ originally
discovered by Dirac when seeking a ‘square root’ of the
d’Alembertian (38) in order to find a first order relativistically
invariant wave equation for the electron. In STA however,
where the γµ are vectors rather than matrices, it is clear that
□ is a vector operator, and we see that it is as significant in
Maxwell’s equations as in Dirac’s.

The symbol∇ ≡ ∂x is often used elsewhere [4], [5] instead
of □ ≡ ∂x , but it has the disadvantage of confusability with
∇ ≡ ∂x in some contexts. Besides, the triangle is suggestive
of three dimensions, while the □ is suggestive of four. That
is why the □ was adopted in the first book on STA [1], and
earlier by Sommerfeld [6] and Morse and Feshbach [7].

Note that the symbol ∂t for the derivative with respect
to a scalar variable t denotes the standard partial derivative,
though the coordinate index is used as the subscript in (37).
In STA an electromagnetic field is represented by a

bivector-valued function F = F(x) on spacetime. Since □ is
a vector operator the expansion (13) applies, so we can write

□F = □ · F +□ ∧ F , (39)

where □ · F is the divergence of F and □ ∧ F is the curl.
Corresponding to the split of a spacetime point (15), the

spacetime split of the vector derivative □ = ∂x gives us a
paravector derivative

γ0□ = ∂0 +∇, (40)

where ∂0 = γ0 · □ = c−1∂t . Hence, for example, the
d’Alembertian takes the familiar form

□2 = ∂20 −∇2, (41)

and the divergence of the vector field A = (cφ+A)γ0 splits
to

□ · A = ∂0 φ+∇ ·A. (42)

Finally, it is worth mentioning that to evaluate vector deriva-
tives without resorting to coordinates, a few basic formulas
are needed. For vector n and bivector F , we shall have use for
the following derivatives of linear functions:

∂nn = 4, ∂nFn = 0, ∂n(n · F) = 2F . (43)

III. ANATOMY OF THE DIRAC WAVE FUNCTION
Considering the central role of Dirac’s equation in the spec-
tacular successes of quantum mechanics and QED, it seems
indubitable that this compact equation embodies some deep
truth about the nature of the electron, and perhaps elementary
particles in general. However, success came with problems
that called for action by the doctors of Quantum Mechanics.
Soon after the initial success in explaining the hydrogen spec-
trum and the magical appearance of spin, it was discovered
that the electron had an antiparticle twin, the positron, con-
joined with it in the Dirac equation. Dirac introduced a surgi-
cal procedure called hole theory that suppressed the positron
to keep it from interfering with the electron. Eventually,
the electron and positron were identified with positive and
negative energy states and separated by a procedure called the
second quantization. That has become the surgical procedure
of choice in QED. Here we take a new look at the anatomy
of the Dirac equation to see what makes the electron tick.
That will lead us to a new unified interpretation of the Dirac
equation wherein electron and positron appear as different
states of the same object coupled by photons so surgery is
unnecessary to separate them.
As first shown in [5], [8], in terms of STA the Dirac

equation can be written in the form

γµ(∂µΨiℏ− e
c
AµΨ) = mecΨγ0 , (44)
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where me is electron mass and now we use e = ±|e| for the
charge coupling constant, while the Aµ = A · γµ are compo-
nents of the electromagnetic vector potential. The symbol i
denotes a unit bivector, which can be written in the following
equivalent forms:

i ≡ γ2γ1 = iγ3γ0 = iσ3 = σ1σ2. (45)

The notation i emphasizes that it plays the role of the unit
imaginary that appears explicitly in matrix versions of the
Dirac equation.

Let us refer to (44) as the real Dirac equation to distinguish
it from the standard matrix version. It is well established that
the two versions are mathematically isomorphic [4], [5], [8].
However, the real version reveals geometric structure in the
Dirac theory that is so deeply hidden in the matrix version
that it remains unrecognized by QED experts to this day. That
fact is already evident in the identification of the imaginary
unit i as a bivector. As we see below, this identification cou-
ples complex numbers in quantum mechanics inextricably to
spin, with profound implications for physical interpretation.
It is the first of several insights into geometric structure of
Dirac theory that will guide us to a reformulation and new
interpretation.

Employing the vector derivative puts the real Dirac equa-
tion in the coordinate-free form

□Ψiℏ− e
c
AΨ = mecΨγ0 , (46)

where A = Aµγ
µ is the electromagnetic vector potential.

The spinor wave function Ψ = Ψ(x) admits of the Lorentz
invariant decomposition

Ψ = ψeiβ/2 with ψ(x) = ρ
1
2R(x), (47)

where ρ = ρ(x) and β = β(x) are scalar-valued functions,
and rotor R = R(x) is normalized to

RR̃ = R̃R = 1. (48)

The Lorentz invariant ‘β-factor’ in the general form (47)
for a real Dirac spinor has been singled out for special
consideration. As this factor is so deeply buried in matrix
representations for spinors, its existence has not been gener-
ally recognized and its physical interpretation has remained
problematic to this day. We shall see it as a candidate for
corrective surgery on the Dirac wave function.

We shall also be considering singular solutions Ψ± of the
Dirac equation (46) called Majorana states and defined by

Ψ± = Ψ(1± σ2) = Ψγ±γ0, (49)

where

γ± = γ0 ± γ2. (50)

We shall see that STA reveals properties of these states that
make them attractive candidates for distinct electron and
positron states.

FIGURE 1. The ‘‘spinning frame’’ of local observables along an electron
path is depicted in a direction orthogonal to the spin vector.

A. LOCAL OBSERVABLES
We begin physical interpretation of the Dirac wave function
with identification of local observables. At each spacetime
point x, the rotor R = R(x) determines a Lorentz rotation of a
given fixed frame of vectors {γµ} into a frame {eµ = eµ(x)}
given by

eµ = RγµR̃ . (51)

In other words, R determines a unique frame field on space-
time. Whence, the wave function determines four-vector
fields

ΨγµΨ̃ = ψγµψ̃ = ρeµ. (52)

Note that the β-factor has cancelled out of these expressions
because the pseudoscalar i anticommutes with the vectors γµ.

It can be shown [3], [4], [8] that two of the vector fields (51)
correspond to well known quantities in matrix Dirac theory.
The quantity

ψγ0ψ̃ = ρv with v = Rγ0R̃ = e0, (53)

is the Dirac current. The Born interpretation identifies this as
a probability current; whence, ρ is a probability density. (We
shall consider an alternative interpretation for ρ later on.) The
quantity

s =
ℏ
2
Rγ3R̃ =

ℏ
2
e3 (54)

can be identified as the electron spin vector, though it looks
rather different than its matrix counterpart. Physical interpre-
tation of e1 and e2 is more subtle, as these vectors are not
recognized in standard Dirac theory. To clarify the matter, we
decompose the rotor R into the product

R = Ve−iφ. (55)
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Then
e1 = Rγ1R̃ = e−Iφa1eIφ = a1e2Iφ, (56)

where
I ≡ R iR̃ = V iṼ and a1 = Vγ1Ṽ , (57)

with an analogous equation for e2. This exhibits the wave
function phase φ as an angle of rotation in a spacelike plane
with tangent bivector I = I(x) at each spacetime point x.
Moreover, the direction of that plane is determined by the spin
bivector defined by

S ≡ isv =
ℏ
2
R iR̃ =

ℏ
2
I . (58)

Thus, we have a connection between spin and phase with the
phase as an angle of rotation in the spin plane.
In general, the Lorentz rotation (51) has a unique decom-

position into a spatial rotation followed by a boost, which is
generated by the rotor product [3]

R = VU (59)

with Uγ0Ũ = γ0 and V = (vγ0)1/2.

For simplicity, we often refer to rotors V and U by the
same names boost and spatial rotation used for the Lorentz
transformations they generate.

We can further decompose the rotor product into

R = U1V0Ũ1U = U1V0U2, (60)

where

V0 = exp {α1σ2} = coshα1 + σ2 sinhα1 (61)

is a boost in a fixed direction σ2 = γ2γ0, while U1 and U2

are spatial rotations.

B. ELECTRON CLOCK AND CHIRALITY
As the notion of an electron clock was central to de Broglie’s
seminal contribution to quantum mechanics [9], its relevance
to interpretation of the Dirac equation deserves thorough
investigation. The clockmechanism can be defined by consid-
ering a Dirac plane wave solution of the form (55) with mo-
mentum p, wherein the phase has the specific form φ = k · x.
Then □φ = k , and the Dirac equation (46) gives us

ℏkReiβ/2 = mecReiβ/2γ0, (62)

which we solve for

k =
mec
ℏ
ve−iβ . (63)

This has two solutions with opposite signs given by cosβ =
±1 and momentum p = mecv = ±ℏk .
Equation v · x = cτ describes a propagating hyperplane

with unit normal v, so (63) gives

p · x = mec2τ. (64)

Accordingly, the vector e1 in (56) rotates in (or on) the
hyperplane with frequency

ωe ≡
2mec2

ℏ
= ±2

dφ
dτ

. (65)

The handedness is opposite for the two solutions. This will be
recognized as the zitterbewegung frequency of Schrödinger. It
is precisely twice the de Broglie frequency because the wave
function phase angle is precisely half the rotation angle of the
observables in (56). The sign of the phase specifies the sense
of rotation, which is opposite for electron and positron.
We can now give the vector e1 a picturesque physical

interpretation as the hand on de Broglie’s electron clock, with
its rotation given by (56). The face of the clock is the bivector
I in (57), and the reference point for an initial time on the
clock face is given by the vector a1. This description of the
electron clock is completely general, as the equations hold
for an arbitrary electron wave function. Indeed, equation (57)
shows that the electron clock can be described as an inertial
clock, because it retains the mark of initial time even as
interactions change the rotor R and hence spin direction and
the attitude of the clock in spacetime.
Of course, interactions can change the clock frequency by

changing the phase φ. Nevertheless, the free electron fre-
quency remains as a reference standard for the electron clock.
This suggests that we define the free electron clock period τe
as the fundamental unit of electron time. Its empirical value,
which I propose to call the zit, is

1 zit = τe =
2π

ωe
=

h
2mec2

= 4.0466× 10−21sec. (66)

Approximately: 1 zit ≈ 4 zepto-sec; 1 sec ≈ 1/4 zetta-zit.
Direct measurement of the ‘zit’ may be possible with electron
channeling experiments [10].
The two signs in (65) indicate clocks with opposite ‘hand-

edness’ or chirality, as we shall say. We identify the negative
sign with an electron clock and the the positive sign with a
positron clock. Indeed, in standard theory the two signs are
interpreted as states with opposite energy and the negative
energy state is identified with the positron. However, we have
seen that the sign is actually determined by cosβ = ±1
without reference to a concept of energy. This suggests that
we interpret β as a ‘chirality parameter.’ Be that as it may, we
can see that the vector e2 specifies the clock-face direction of
motion for the clock hand e1. Hence antiparticle conjugation
should be defined to reverse the direction of e2 while keeping
the direction of e1 unchanged.
Finally, we note that the Born probability density has been

set to ρ = 1 on the propagating hyperplane, thus implying that
all points on the hyperplane are equally probable positions
x0 for the electron at initial time τ0. However, for any initial
position x0, the velocity v = ẋ integrates to a unique position

x(τ) = vτ + x0. (67)

Thus, the plane wave solution consists of an ensemble of
equally probable particle paths composing a congruence (or
fibration) of non-intersecting, timelike paths that sweep out
(fibrate) a region of spacetime.
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C. ELECTRON CLOCK WITH ZITTER
There is another plane wave solution that has been largely
overlooked in the literature. In this case the parameter β plays
no role. We simply switch (55) into the form (with ρ = 1)

ψ = e−iφV0, (68)

which is of type (60) with constant V0 given by (61). This
solves the Dirac equation with φ = p · x/ℏ and p = mecγ0.
To verify that:

□ψiℏ = −mecγ0iσ3ψiσ3 = mecψγ0. (69)

Note that γ0iσ3 = iγ3 commutes with ψ, whereas γ0 and
iσ3 do not. Generalization to a solution for arbitrary constant
p = mecVγ0Ṽ is obviously given by a boost to ψ′ = Vψ.
Now, using (61) we can express the wave function (68) as

the sum of positive and negative energy solutions:

ψ = coshα1e−ik·x + σ2 sinhα1e+ik·x ≡ ψ+ + ψ−. (70)

The analog of hermitian conjugate in standard matrix Dirac
algebra is defined by ψ† = γ0ψ̃γ0. Whence, the velocity is
given by

v = ψγ0ψ̃ = ψψ†γ0

= {|ψ+|2 + |ψ−|2 + ψ+ψ
†
− + ψ−ψ

†
+}γ0. (71)

In agreement with [11], this exhibits zitterbewegung as aris-
ing from interference between positive and negative energy
states, as originally formulated by Schrödinger. However, it
also exhibits zitterbewegung as circulation of electron ve-
locity in the spin plane. I have coined the term zitter to
distinguish this interpretation of zitterbewegung from other
alternatives in the literature.

This result settles a long-standing controversy about the
interpretation of zitterbewegung. To this day, studies of Dirac
wave packets (e.g. [12]) fail to recognize the connection of
zitterbewegung to spin. Instead, it is identified as a high fre-
quency interference effect, often attributed to interaction with
the vacuum with a negative energy component ψ− presumed
to express presence of positrons. On the contrary, in the zitter
model here the ‘negative energy’ term has nothing to do with
positrons. Instead, it is a structural feature of electron motion
involving electron spin and phase.

We can associate our zitter plane wave with particle motion
in the same way for the plane wave in the preceding subsec-
tion. Without loss of generality, we can write p = mecγ0, so
φ = p · x/ℏ = ωeτ/2 defines a plane propagating in the
direction of p with proper time τ . Then (68) and (71) gives us
a parametric equation for the particle velocity:

v(τ) = e−
1
2 iωeτv0 e

1
2 iωeτ = aγ0 + b γ2 eiωeτ , (72)

where a and b are constants, while ωe is the free particle zitter
frequency. For v = ẋ, this integrates to

x(τ) = γ0acτ + bλe e1 + x0, (73)

where λe = c/ωe and

e1(τ) = γ1 eiωeτ , (74)

is the electron clock vector.
The particle path x(τ) specified by (73) is a timelike helix

with pitch bλe/a. Thus, the zitter plane wave solution consists
of an ensemble of equally probable particle paths that fibrate
a region of spacetime with a congruence of non-intersecting,
timelike helices.

Though the circular frequency ωe is constant, the circular
speed increases with radius bλe until reaching the limiting
case λeωe = c at the speed of light. In that limit, V0 → 1+σ2

in (60), and we get the Majorana wave function Ψ+ defined
in (49), so the velocity vector (72) becomes a null vector

u(τ) = Ψ+γ0Ψ̃+/ρ

= e−
1
2 iωeτγ+e

1
2 iωeτ = γ0 + γ2 eiωeτ . (75)

In this case, zitter with the electron clock is intrinsic to
electron motion, whereas in the previous case described by
(72) the zitter can vanish with b = 0.
Thus, we have three distinct kinds of free particle (plane

wave) states: Kind A, given by (55), with no zitter; Kind B,
given by (68) and (72), with zitter velocity ranging between
zero and the speed of light; and Kind C, given by (75), with
zitter velocity λeωe = c.
Kind B is related to Kind A by a unitary transformation. For

example, (68) is related to (55) by

γ1(e−iφV0)γ
†
1 = V0e−i†φ, (76)

where γ†1 = γ∗1 = −γ1 and the right side is interpreted
as a positive energy factor with i replaced by i†. It can be
generated by the continuous unitary transformation

ψ → WψW †, where W = eγ1 α0 , (77)

whichmay be recognized as a Foldy-Wouthuysen (FW) trans-
formation [13].
The FW transformation is commonly used to eliminate

negative energy components in electron wave functions, often
because they are regarded as ‘unphysical.’ Without going into
arguments supporting this practice, the point here is that it
suppresses the role of zitter in describing electron motion.
To ascertain what the Dirac equation can tell us about

the physical significance of zitter, the parameter β and the
electron clock, we study the properties of local observables
thoroughly in the next section. This will help us address such
questions as: Is zitter an objectively real physical property
of the electron? Should electron phase (de Broglie’s clock)
be regarded as a feature of electron zitter? What is the role
of zitter in quantization? Of course, the answers will lead to
more questions and speculation.

IV. FLOW OF LOCAL OBSERVABLES
We turn now to a general analysis of conservation laws im-
plied by the Dirac equation as a foundation for physical inter-
pretation. To facilitate comparison with conventional Dirac
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theory, we first express the conservation laws in terms of
the wave function. Then we peel them apart to reveal their
structure in terms of local observables.

A conservation law for the Dirac current Ψγ0Ψ̃ = ρv is
easily derived from the Dirac equation (46) and takes the form

□ · (ρv) = 0. (78)

This can be interpreted as flow of a fluid with proper density
ρ. Preciselywhat kind of fluid depends on the interpretation of
other local observables, in particular, observables describing
the flow of energy, momentum, charge and electromagnetic
potential. Following a systematic approach in defining these
observables within the Dirac theory, we shall discover hidden
structure that has been generally overlooked.

The original formulation of the Dirac equation was based
on interpreting

p µ = iℏ ∂µ − e
c
Aµ (79)

as a gauge invariant energy-momentum operator. The under-
bar notation here designates a linear operator. Specifically, the
operator i designates multiplication by the unit imaginary in
the matrix version of Dirac theory, and right multiplication by
the unit bivector i = iγ3γ0 in the STA version, as specified in

p µΨ = ℏ ∂µΨiγ3γ0 −
e
c
AµΨ. (80)

Equivalence of operators in the matrix version to expressions
in the present STA version is discussed in [14].

The energy-momentum operator also led to the definition
of an energy-momentum tensor T (n) with components

Tµν = Tµ · γν = ⟨γ0Ψ̃γµpνΨ⟩, (81)

where
Tµ = T (γµ). (82)

The stress tensor T (n) is defined physically as a vector-valued
tensor field specifying, at each spacetime point, the energy-
momentum flux through a hypersurface with unit normal n.
Its adjoint T (n) can be defined by

γµ · T (γν) = T (γµ) · γν = Tµν . (83)

Note the overbar notation T (n) to indicate the adjoint of a
linear function T (n) specified by an underbar. In this case the
linear functions are vector-valued, but the same notation is
used for bivector-valued linear functions below.

The Dirac equation (46) can be derived from the La-
grangian

L =
〈
ℏ□Ψiγ3Ψ̃− e

c
AΨγ0Ψ̃− mecΨΨ̃

〉
. (84)

As is well known, a major advantage of this approach is
that conservation laws consistent with the equations of mo-
tion can be derived from symmetries of the Lagrangian. The
most elegant and efficient way to do this is the method of
multivector differentiation introduced by Lasenby, Doran and

Gull in [15]. In particular, from translation invariance of the
Lagrangian they derived the stress tensor

T (n) = γµ

〈
(pµΨ)γ0Ψ̃n

〉
= γµ

〈
(ℏ∂µΨiγ3γ0)γ0Ψ̃n

〉
− e
c
Aρ (v · n). (85)

This is equivalent to the stress tensor most commonly em-
ployed in Dirac theory.
However, when Lasenby, Doran and Gull generalized their

method in a ground breaking paper on Gauge Theory of
Gravity [16], translation invariance gave instead the adjoint
stress tensor

T (n) =
〈
ℏ(n ·□Ψ)iγ3Ψ̃

〉
1
− e
c
(A · n)ρ v. (86)

This raises a question as to which stress tensor is correct for
the electron: T (n) or T (n)? We will leave that question open
for the time being while we examine both and compare their
properties. The first derivation of this tensor from the Dirac
equation was made by Tetrode [17], so it is fair to call it the
Tetrode tensor.
The dynamics of flow is determined by the divergence of

the stress tensor:

T̀ (□̀) = ∂µT (γµ) = ∂µTµ

=
〈
ℏ(□2Ψ)iγ3Ψ̃

〉
1
− e
c
∂µ(ρ vAµ). (87)

We need the Dirac equation (46) to evaluate this. Since〈
∂µΨiγ3 ∂µΨ̃

〉
1
= 0, (88)

we have〈
ℏ(□2Ψ)iγ3Ψ̃

〉
1
=

ℏ
2
[□2Ψiγ3Ψ̃−Ψiγ3□2Ψ̃]

= ρ
e
c
(□ ∧ A) · v+ e

c
∂µ(ρ vAµ). (89)

Whence

T̀ (□̀) = ∂µTµ =
e
c
F · (ρv) ≡ ρf , (90)

where F = □ ∧ A is an external electromagnetic field. This
has precisely the form for the Lorentz force on a classical
charged fluid, and it supports the interpretation of the Dirac
current eρv as a charge current.
A conservation law for angular momentum can be derived

from invariance of the Lagrangian (84) under Lorentz rota-
tions [15], but we derive it directly from properties of the
stress tensor, as it makes structure more explicit. From (90)
we obtain,

∂µ(Tµ ∧ x) = Tµ ∧ γµ + ρf ∧ x. (91)

To see how this equation gives us angular momentum conser-
vation, we need to analyze the first term on the right. In doing
so we find other interesting results as byproducts.
First, note that

γµ
〈
ℏ(∂µΨ)iγ3Ψ̃

〉
1
= ℏ(□Ψ)iγ3Ψ̃ +□(iρs). (92)
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Then, combine this with the Dirac equation (46) in the form

ℏ(□Ψ)iγ3Ψ̃ = mecρeiβ +
e
c
Aρv (93)

to get

∂nT (n) = γµT (γµ) = □(iρs) + mecρeiβ . (94)

The scalar part of this equation gives us the trace of the stress
tensor:

Tr(T ) = ∂n · T (n) = mecρ cosβ, (95)

and the pseudoscalar part gives us

□ · (ρs) = mecρ sinβ. (96)

This displays a peculiar relation of β to mass and spin of
questionable physical significance. However, β plays no role
in the bivector part of (94), which gives us

γµ ∧ T (γµ) = T (γµ) ∧ γµ = □ · (iρs) = ∂µSµ, (97)

where

Sµ = S(γµ) = γµ · (iρs) = ρi(s ∧ γµ) (98)

is identified as a bivector-valued spin flux tensor.
Equation (97) gives us an explicit relation between the

stress tensor and its adjoint:

T (n)− T (n) = n · (γµ ∧ Tµ) = (n ∧□) · (iρs). (99)

And inserting this into (90) with n = □, we find that the
divergence of the stress tensor is equal to the divergence of
its adjoint:

∂µT (γµ) = ∂µT (γµ) =
e
c
F · (ρv) = ρf . (100)

This equivalent divergence of the stress tensor and its adjoint
has been overlooked in the literature. Let us compare these
two tensors more closely.

The flux ofmomentum along theDirac current is especially
significant, because that is the direction of particle flow.
Accordingly, we define a momentum density ρp along this
flow by

ρp ≡ T (v). (101)

The adjoint determines a conjugate momentum density ρpc
defined by

ρpc ≡ T (v). (102)

We will be looking to ascertain the physical difference be-
tween these two kinds of momenta. First we note a small
difference in angular momentum.

Returning now to the question of angular momentum con-
servation, inserting (97) into (91), we get the desired conser-
vation law:

J̀(□̀) = ∂µJµ = ρf ∧ x, (103)

where the total angular momentum tensor flux is a bivector-
valued tensor with orbital and spin parts defined by

Jµ = J(γµ) = Tµ ∧ x + Sµ. (104)

Accordingly, the angular momentum flux along the Dirac
current is given by

J(v) = ρ(p ∧ x + S), (105)

where S(v) = ρS confirms our earlier identification of S =
isv as a spin bivector.
Alternatively, we can define a conjugate angular momen-

tum tensor
Jµc = T (γµ) ∧ x − Sµ, (106)

which by the same argument yields the conservation law

∂µJµc = ρf ∧ x. (107)

But the conjugate angular momentum flow has a spin of
opposite sign:

J c(v) = ρ(pc ∧ x − S). (108)

This sign difference can be interpreted geometrically as an
opposite orientation of spin S to velocity v or momenta p and
pc. To probe the difference between the momenta p and pc
more deeply, we express them as explicit functions of local
observables.
The dynamics of the local observables eµ = RγµR̃ is

determined by the linear bivector-valued function

Ωµ = Ω(γµ) ≡ 2(∂µR)R̃. (109)

Thus,
∂νeµ = Ων · eµ. (110)

In particular, the derivatives of the velocity and spin vectors
are

∂νv = Ων · v and ∂νs = Ων · s, (111)

while the derivative of the spin bivector S = isv is given by
the commutator product:

∂µS = Ωµ × S. (112)

Now, with the wave function in the form

Ψ = ψeiβ/2 = Re(α+iβ)/2, (113)

its derivatives can be related to observables by

ℏ(∂µΨ)iγ3Ψ̃ = ρ[(i∂µα+ ∂µβ)s+ΩµSv], (114)

with the product expansion

ΩµS = Pµ + ∂µS + iqµ , (115)

where we have identified components Pµ = γµ · P of the
canonical momentum vector P defined by

Pµ = Ωµ · S =
ℏ
2
e1 · ∂µe2 = −ℏ

2
e2 · ∂µe1, (116)

and the pseudoscalar part is given by

iqµ = Ωµ ∧ S = iΩµ · (sv) = i(∂µs) · v. (117)

Finally, by inserting (114) into (86) we obtain the components
of the stress tensor in the transparent form

Tµν = ρ[vµ(Pν − e
c
Aν) + (v ∧ γµ) · ∂νS − sµ∂νβ]. (118)
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This gives us an informative expression for the conjugate
momentum:

T (v) = ρ{[(P− e
c
A) · v]v+ Ṡ · v− sβ̇} = ρpc. (119)

The first two terms in this expression for momentum flow
along a streamline of the Dirac current make perfect physical
sense. Note that the factor (P − e

cA) · v serves as a gauge
invariant variable mass determined by the frequency of the
electron clock, which is specified by

P · v = Ωv · S =
ℏ
2
e1 · ė2 = −ℏ

2
e2 · ė1, (120)

where

ėµ = v ·□ eµ = Ωv · eµ and Ωv = Ω(v). (121)

The second term Ṡ · v = v̇ ·S in (119) specifies a contribution
of spin to linear momentum due to acceleration. However, a
physical interpretation for the last term involving the direc-
tional derivative β̇ = v ·□β remains problematic. Resolving
that problem will be a major goal in the rest of this paper.

From the stress energy components (118), we also get a
remarkably simple expression for the momentum density:

T (v) = ρ(P− e
c
A) = ρp. (122)

And for flux in the spin direction we get:

T (s) = −ρsβ̇. (123)

Combining (122) with (119) we obtain,

pc = (p · v)v+ Ṡ · v− sβ̇. (124)

As we shall see, it is especially important to note that in these
equations both p and pc are defined independently of ρ, and
physical interpretation of the strange parameter β appears to
be tied up with spin.

Having thus identified the canonical momentum P as a
local observable, we can express the Dirac equation as a
constitutive equation relating observables. Thus, from (114)
and (115) we derive the expression

ℏ(□Ψ)iγ3Ψ̃ = [ρP+ [□(ρeiβS)]e−iβ ]v, (125)

which we insert into the Dirac equation (93) to get it in the
form

ρ(P− e
c
A)eiβ = mecρv−□(ρeiβS). (126)

Its vector part is a constitutive equation involving the Dirac
current:

ρ(P− e
c
A) cosβ = mecρv−□ · (ρeiβS). (127)

The right side of this equation has vanishing divergence, and
we identify it as the well known Gordon current. Unlike the
vector part, the trivector part of (126) does not have any
evident physical meaning, though it does serve as a constraint
among the variables.

This completes our exact reformulation of Dirac Theory
in terms of local observables. We have found clear physical

interpretations for all components of the Dirac wave function
except the parameter β. The strangeness of β is most explicit
in equation (127) for the Gordon current, where the factor
eiβ generates a duality rotation without obvious physical
significance. And that equation implies the conservation law

□ · [ρ(P− e
c
A) cosβ] = □ · (ρp cosβ) = 0, (128)

where again the role of β is problematic.
The Gordon current can be regarded as a reformulation of

theDirac equation in terms of local observables, as our deriva-
tion of (127) shows. For this reason, it plays a fundamental
role in our analysis of alternative physical interpretations in
subsequent sections. But first we try to make some sense of
β.

A. PROBLEMS WITH β

We begin our study of β by reformulating the Dirac La-
grangian (84) with Ψ = ψeiβ/2 to make the role of β explicit
and then to relate it to the explicit role of other observables:

L =
〈
ℏ□ψiγ3ψ̃ − e

c
Aψγ0ψ̃ − mecρ cosβ − ρs□β

〉
= ρ(P− e

c
A) · v+ (v ∧□) · (ρS)

− mecρ cosβ − ρs ·□β. (129)

The mass term ⟨mecΨΨ̃⟩ = mecρ cosβ has always been
problematic in QED. Indeed, it has been eliminated from
the Standard Model, which aims to derive the mass from
fundamental theory. We shall see that is a major mistake,
amounting to ‘‘throwing out the baby with the bathwater!’’
When the β-factor eiβ is constant, (47) can be used to factor

it out of the Dirac equation (46) to exhibit its role explicitly:

{ℏ□ψiγ3γ0 −
e
c
Aψ}ψ̃eiβ = mecψγ0ψ̃ = mecρv. (130)

Note that setting eiβ = −1 amounts to reversing orientation
of the bivector i = iγ3γ0 that generates rotations in the
phase plane along with reversing the sign of the charge, as
required for antiparticle conjugation according to the chirality
hypothesis. Accordingly, the Dirac equation is resolved into
separate equations for the electron and positron.

We have seen how plane wave solutions of the Dirac equa-
tion suggest that the β distinguishes particle from antiparticle
states. Let us call that suggestion the chirality hypothesis.
Some credence to this hypothesis is given by the fact that uni-
tary spinors R and Ri are distinct spin representations of the
Lorentz group, so it is natural to associate them with distinct
particles. However, the Dirac spinor Reiβ/2 is a continuous
connection between both representations, suggesting that β
parametrizes an admixture of particle/antiparticle states.

After I discovered that cosβ = ±1 solves the problem of
negative energies for plane waves and thereby separates elec-
tron and positron plane wave state, I set about studying the
physical significance of β in the general case. I got great help
from my graduate student Richard Gurtler, who thoroughly
examined the behavior of β in the Darwin solutions of the
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Dirac equation for hydrogen [18]. The results do not seem
to support the chirality hypothesis, for the parameter β varies
with position in peculiar ways. The values cosβ = ±1 appear
only in the azimuthal plane, which suggests that 2d solutions
might satisfy the chirality hypothesis, but the chirality jumps
in sign across nodes in the plane in an unphysical way. At
about the same time I began a systematic study of local
observables in Dirac theory [19] and their roles in Pauli and
Schrödinger theories [20]–[22], but I was unable to make
sense of the peculiar behavior I found for β.
This problem of interpreting β has never been recognized

in standard QED. Indeed, it is commonly claimed that second
quantization solves Dirac’s problem of negative energies. My
suspicion is that cosβ = ±1 has been tacitly assumed in QED
when it begins by quantizing plane wave states. Consistency
of that procedure with the Darwin solutions has never been
proved to my knowledge. It seems that a perceived need for
such a proof is avoided by claiming that the Darwin case
is concerned with one-particle quantum mechanics, whereas
QED is a many-particle theory.

The next Section makes the essential role of β in standard
Dirac theory explicit in preparation for subsequent identifica-
tion of its physical significance.

V. PILOT WAVE THEORY WITH THE DIRAC EQUATION
Let me coin the name Born–Dirac for standard Dirac theory
with the Born rule for interpreting the Dirac wave function as
a probability amplitude.

The Born rule was initially adopted for Schrödinger theory
and subsequently extended to Dirac theory without much
discussion—in fact, without even establishing the correct
relation between Dirac and Schrödinger wave functions. The
latter is supposed to describe a particle without spin. How-
ever, a correct derivation from the Dirac equation [21], [22]
implies instead that the Schrödinger equation describes an
electron in a spin eigenstate, and its imaginary unit must be
identified with the spin bivector iℏ = 2is .
Subsequently, physical interpretation of Schrödinger the-

ory has been hotly debated, while, ironically, relevant im-
plications of the more precise Dirac theory have been over-
looked. To correct this deficiency, our first task here is to up-
date Born-Dirac theory with recent insights on interpretation
of Schrödinger theory. Then we can consider enhancements
from our study of local observables in Dirac theory.

After decades of debate and clarifications, it seems safe
to declare that de Broglie-Bohm pilot wave theory is well
established as a viable interpretation of quantum mechanics,
though that may still be a minority opinion among physicists.
Current accounts suitable for our purposes are given in [23],
[24]. The point to be emphasized here can be regarded as a
refinement of the Born rule, which says the wave function
for a single electron specifies its probable position at a given
time. The pilot wave rule extends that to regarding the wave
function as specifying an ensemble of possible particle paths,
with the electron traversing exactly one of those paths, but
with a certain probability for each path. So to speak, the wave

function serves to guide the electron along a definite path, but
with a specified probability. Hence the name pilot wave for
the wave function. In his ‘‘theory of the double solution,’’ de
Broglie argued for a physical mechanism to select precisely
one of those paths, but that alternative is not available in
conventional pilot wave theory. Instead, path selection is said
to require an act of observation, which continues to be a
subject of contentious debate and will not be discussed here.
Strictly speaking the pilot-wave rule requires only an as-

signment of particle paths to interpret the wave function;
whence, ρ(x, t) can be interpreted as a density of paths.How-
ever, for agreement with the Born rule it allows assignment
of probabilities to the wave function in its initial conditions,
which then propagate to probabilities at any subsequent time.
Accordingly, these probabilities should not be interpreted as
expressions of randomness inherent in Nature as commonly
claimed for Schrödinger theory. Rather, consistent with its
realist perspective, pilot wave theory regards probabilities in
quantum mechanics as expressing limitations in knowledge
of specific particle states (or paths). This viewpoint is best
described by Bayesian probability theory, as most trenchantly
expounded by Jaynes [25]. Accordingly, we regard the Born-
Dirac wave function as specifying Bayesian conditional prob-
abilities for electron paths.
The Schrödinger wave function in pilot wave theory is a

many particle wave function. Here we confine attention to
the single particle theory, and we review some well known
specifics [24] to focus on crucial points.
With wave function

ψ = ρ1/2eS/iℏ, (131)

Schrödinger’s equation can be split into a pair of coupled
equations for real functions ρ = ρ(x, t) and S = S(x, t) with
scalar potential V = V (x):

∂tS +
(∇S)2

2m
− ℏ2

2m
∇2ρ1/2

ρ1/2
+ V = 0, (132)

∂tρ+∇ ·
(
ρ∇S
2m

)
= 0. (133)

Equation (132) can be written

(∂t +
1

m
(∇S) ·∇)∇S = −∇(V + Q), (134)

where

Q = Q(x, t) =
ℏ2

2m
∇2ρ1/2

ρ1/2
. (135)

Identifying
m−1∇S = v = ẋ (136)

as the velocity of a curve x(t) normal to surfaces of constant
S, from (134) we get an equation of motion for the curve:

(∂t +
1

m
ẋ ·∇)mẋ = mẍ = −∇(V + Q). (137)

This has the form of a classical equation of motion, but
with the classical potential V augmented by the quantity
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Q, commonly called the quantum potential to emphasize its
distinctive origin.

A striking fact about Q is its influence on electron motion
even in the absence of external forces. Its noteworthy use in
[26] to compute particle paths in electron diffraction stimu-
lated a resurgence of interest in Pilot Wave theory. That com-
putation supported interpretation of Q as a ‘‘causal agent’’ in
diffraction, but identification of a plausible ‘‘physical mecha-
nism’’ to explain it has remained elusive. So interpretation of
Q as an intrinsic property of the wave function that does not
require further explanation has remained the default position
in Pilot Wave theory.

The Pauli equation has been used to analyze the effect of
spin on electron paths in 2-slit diffraction [27]. The authors
identify the correct generalization of the Pilot Wave guidance
law (136) as

ẋ = ∇S + ρ−1∇× (ρs). (138)

However, they failed to note the more fundamental fact that,
even in Schrödinger theory, the ‘‘quantum force’’ is spin de-
pendent, though that was spelled out in one of their references
[28]. Indeed that reference derived the equation of motion

ρmẍ = ρf + T̀(∇̀), (139)

where the accent indicates differentiation of the stress tensor
T(n), and the applied force has the general form

f = e[E+ v×B/c] +
e
mc

∇̀B̀ · s, (140)

while components of the stress tensor are

σi ·T(σj) =
ρ

m
s · [∂i∂js+ s ∂i∂j ln ρ] = Tji. (141)

When the spin vector s is constant, the stress tensor term in
(139) reduces to the ‘‘Quantum force’’ −∇Q in Schrödinger
theory. Thus we see that the ℏ2 factor in Q comes from
squaring the spin vector, and the Quantum force is actually
a momentum flux. All this puts the diffraction problem in
new light. Indeed, we shall see that spin dependence of the
quantum force is even more obvious in Dirac theory.

Derivation of Pauli and Schrödinger equations as non-
relativistic approximations to the Dirac equation in [21]
also traces corresponding changes in local observables. That
brings to light many inconsistencies and omissions in stan-
dard treatments of those approximations. The most egregious
error is failure to recognize that the Schrödinger equation
describes the electron in an eigenstate of spin. Implications
of that fact are discussed at length in [22].

Another surprising result from [21], [22] is proof that β
makes an indisputable contribution to the energy in Pauli-
Schrödinger theory, even though it has been banished from the
wave function. It arises from the spin density divergence (96),
which in the non-relativistic approximation takes the form

mecρβ = −∇ · (ρs). (142)

This deepens the mystery of β. More clues come from solu-
tions to the Dirac equation.

A. PILOT WAVES IN DIRAC THEORY
Extension of the Pilot Wave interpretation for nonrelativistic
wave functions [23] to Dirac theory with STA has been crit-
ically examined at length in [29], where it is demonstrated
with many examples that calculations and analysis with the
Real Dirac equation is no more complicated than with the
Pauli equation. Indeed, the first order form of the Dirac
equation makes some of it decidedly easier. The treatment
of scattering at potential steps is generalized to include both
spin and oblique incidence, with STA simplifications not to be
found elsewhere. The analysis of evanescent waves exhibits
the flow of Dirac streamlines (without commitment to their
interpretation as particle paths). The study of tunneling times
shows how part of the wave packet passes through the barrier
while part slows down and turns back. No notion of wave
function collapse is needed to interpret observations. It is also
shown that the distribution of tunneling times observed exper-
imentally can be attributed entirely to structure of the initial
wave packet, thus making it clear that, contrary to claims
in the literature, no superluminal effects are involved. The
general conclusion is that interpretation of Dirac streamlines
as particle paths is consistent with the Dirac equation and
helpful in physical interpretation.
Indeed, the fundamental equation for momentum balance

in Dirac theory gives us a complete and straightforward rela-
tivistic generalization of pilot wave theory that seems not to
have been recognized heretofore. One needs only to apply it
to a single streamline z = z(τ) with proper velocity ż and
spin bivector S = S(z(τ)). Then the equation can be put in
the form of a generalized pilot wave guidance equation:

□Φ = mecż+ S ·□ ln ρ+ Ṡ · ż, (143)

where
□Φ = P− e

c
A (144)

is the gradient of a generalized electron phase expressed in
action units. This gradient expression may have important
implications for electron diffraction. For a free particle, the
generalized momentum P is necessarily a phase gradient.
However, electron motion in diffraction might also be influ-
enced through a vector potential generated by material in the
guiding slits. Since the curl□∧Amust vanish in the vacuum
near the slits, the vector potential is necessarily a gradient,
so it can be combined with P as in (144). This possibility
has been overlooked in the literature on diffraction. It may
be crucial for explaining how the slits transfer momentum to
each electron in diffraction.
The remaining piece of pilot wave theory is given by the

conservation law for the Dirac current (78). Evaluated on the
particle path it gives us

□2Φ = −mecż ·□ ln ρ, (145)

which describes the evolution of path density.
The relativistic guidance law (143) not only combines the

the two basic equations (132) and (138) of nonrelativistic
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theory into one, it generalizes the scalar quantum potential
into a vector S ·□ ln ρ and makes its spin dependence explicit.
To compare the two versions, we perform a spacetime split

of (143), taking due account of their different notations. For
the velocity split we have

żγ0 = γ + ṙ with γ = cṫ. (146)

And for the spin bivector S = isv we have the split

S = s× ṙ+ is⊥, (147)

where s⊥ = γs − s0ṙ. Writing a = □ ln ρ with the split
aγ0 = a0 + a and using (32), we get the split of the quantum
vector potential:

(S · a)γ0 = (s× ṙ) · a+ a0s× ṙ+ a× s⊥. (148)

Putting it all together, for the split of the guidance law (143),
we get the generalization of (132) and (138):

c−1∂tΦ = mecγ + (s× ṙ) · ∇ ln ρ, (149)

∇Φ = mec ṙ+ (c−1∂t ln ρ)s× ṙ− s⊥ ×∇ ln ρ. (150)

A detailed proof that the term (s × ṙ) · ∇ ln ρ does indeed
reduce to Bohm’s quantum potential in the nonrelativistic
limit is not needed here. Suffice it to say that both have
been derived from Dirac’s equation. The term Ṡ · ż has been
ignored in these equations, because it has no analogue in
the nonrelativistic theory. Its implications are studied in the
following Sections.

B. CAUCHY PROBLEM WITH β

To solve the Cauchy problem for an electron, we need to
project the Dirac equation to a spacelike hyperplane. Accord-
ingly, we perform a spacetime split of operators in the Dirac
equation (46) to put it in the form

(∂t + c∇)Ψiℏ = mec2Ψ∗ + e(A0 −A)Ψ, (151)

where the mysterious parameter β is hidden in the mass term
with

Ψ∗ = γ0Ψγ0, (152)

with implications to be discussed later. The definition of
electron energy in Dirac theory differs from the definition in
the nonrelativistic theories by including the rest energy. As
explained in [21], we can remove the rest energy while re-
taining the definition of energy in terms of the wave function
by transforming the wave equation with

Ψ → Ψe−iσ3mec2t/ℏ. (153)

to the equivalent form

(∂t + c∇)Ψiℏ = mec2(Ψ∗ −Ψ) + e(A0 −A)Ψ. (154)

This equation is readily re-expressed in standard Hamiltonian
form

∂tΨiℏ = HΨ, (155)

though the structure of the Hamiltonian operator H may look
unfamiliar at first.

Boudet has applied this approach to a thorough treatment
of the Darwin solutions for hydrogen and their application
to basic state transitions [30]. (See also [29] for a somewhat
different STA treatment.) For a stationary state with constant
energy E and central potential V (r), the wave function has
the form

Ψ(r, t) = ψ(r)e−iσ3Et/ℏ (156)

and Boudet puts equation (151) in the form

∇ψ =
1

ℏc
[−E0ψ

∗ + (E + V )ψ]iσ3, (157)

where E0 = mec2. He then splits the wave function into even
and odd parts defined by

ψ = ψe + iψo ψ∗ = ψe − iψo (158)

to split (157) into a pair of coupled equations for quaternionic
spinors:

∇ψe =
1

ℏc
[−E0 − E − V )ψoσ3, (159)

∇ψo =
1

ℏc
[−E0 + E + V )ψeσ3. (160)

These he solves to get the Darwin solutions.
The same even-odd split was used in [21] to get non-

relativistic approximations to the Dirac equation. The split
there mixes β and boost factors in a peculiar way with no
obvious meaning. Indeed, the peculiar behavior of β and
local velocity in the Darwin solutions defies any obvious
physical interpretation in terms of local observables, with
nodes separating positive and negative energy components
in strange ways [18]. These facts are not even recognized
in the standard literature, let alone regarded as problematic.
Nevertheless, they pose a challenge to associating particle
properties with the wave function. A capstone for this chal-
lenge is the following virial theorem for electron energy
derived in [21]:

⟨E⟩ = mec2
〈
cosβ

v0

〉
= mec2

∫
d3x cosβ, (161)

where v0 = v(x) · γ0 is the time component of the electron’s
velocity field. A straightforward interpretation of this result
is that cosβ(x) is a measure of energy density in the field
of an electron. We will find confirming evidence for this
interpretation later in Section VII.

C. SCATTERING AND QED WITH ZITTER
The link between standard quantum mechanics (QM) and
quantum electrodynamics (QED) passes through the Dirac
equation. It is commonly claimed that the link requires second
quantization with quantum field theory (QFT). But Feynman
vehemently denied that claim. When the issue arose in a
QED course I attended, I recall Feynman dramatically re-
monstrating that, if anyone dares to defend axioms of QFT,
‘‘I will defeat him. I will cut his feet off’’ (with a violent
cutting gesture for emphasis!). Indeed, the famous formula
[q, p] = iℏ, which Born proposed as a foundation of QM (and
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had engraved on his tombstone), cannot be as general as he
thought. For there is no explanation why Planck’s constant
here is related to electron spin or the Dirac equation. Also,
one can argue that QFT commutation relations for particle
creation and annihilation operators are merely bookkeeping
devices for multiparticle physics without introducing new
physics. Let us look at how Feynman got along without it.

A reformulation of Feynman’s approach to QED with STA
is laid out in [31], [32], with explicit demonstrations of its
advantages in Coulomb and Compton scattering calculations.
For example, the S-matrix is replaced by a scattering operator
Sfi that rotates and dilates the initial state to the final state, as
expressed by

ψf = Sfiψi (162)

with
Sfi = ρ

1/2
fi Rfi, (163)

whereRfi is a rotor determining the change in direction of spin
as well as momentum, while ρfi = |Sfi|2 is a scalar dilation
factor determining the cross section.

Feynman linked QM to QED by reformulating the Dirac
equation as an integral equation coupled to Maxwell theory
through the vector potential:

ψ(x) = ψi(x)− e
∫
d4x′SF (x − x′)A(x′)ψ(x′). (164)

This solves the Dirac equation (46) with p0 = mecγ0 if the
Green’s function SF (x − x′) satisfies the equation

□SF (x − x′)M(x′)i− SF (x − x′)M(x′)p0
= δ4(x − x′)M(x′), (165)

whereM = M(x) is an arbitrary multivector valued function
of x. It has the causal solution

SF (x − x′)M i =− Θ(t − t ′)
(2π)3

∫
d3p
2E

(pM +Mp0)ie−ip·(x−x′)

+
Θ(t − t ′)
(2π)3

∫
d3p
2E

(pM +Mp0)ieip·(x−x′),

(166)

where E = p·γ0 > 0. Note that SF (x−x′) is a linear operator
on M here. In general M does not commute with p, p0, or
the bivector i = iσ3, so it cannot be pulled from under the
integral.

We can draw several important conclusions from the
present approach to QED. One advantage of the integral
form (164) for the Dirac equation is that the causal bound-
ary condition (166) explicitly enforces the association of
electron/positron states with positive/negative energy states
respectively. As noted in Section IVB, these states can be
switched by multiplication with the pseudoscalar i.
At this point, permit me to insert a relevant anecdote that

I heard Feynman tell on himself. One day, when he was
demonstrating his spectacular prowess at complex QED cal-
culations, a brave student objected: ‘‘You can’t normalize
negative energy states to plus one, you must use a negative
one.’’ ‘‘Oh yes I can!’’ retorted Feynman with the confidence

of one who had won a Nobel prize with his calculations and
demonstrated them repeatedly over more than a decade in
QED courses and lectures. Then he proceeded to prove that
the student was right! Sure enough, check out eqn. (62) to see
that theminus sign comes from squaring the unit pseudoscalar
(which, of course, Feynman never did learn)!
Returning to the main point, we note that the absence of

a β-factor eiβ in the scattering operator (163) shows that
positive and negative energy states are notmixed in scattering.
Indeed, the question of a β-factor never arises in QED, be-
cause all calculations are based on plane waves without it, and
it is not generated by conventional wave packet construction.

Of course, the Born rule is not an intrinsic feature of the
Dirac equation, but is imposed only for purposes of inter-
pretation. It is important, therefore, to recognize that results
of plane wave scattering have a straight forward geometric
interpretation without appeal to probability. Indeed, the Dirac
equation generates a unique spacetime path for each point
on an initial plane wave. The conservation law for the Dirac
current implies that these paths do not intersect, though they
may converge or separate. Accordingly, if we assign uniform
density to paths beginning on the initial plane wave, then the
scattering operator determines the density of particle paths in-
tersecting a surface surrounding the scattering center. In other
words, the squared modulus ρ of the Dirac wave function
specifies the density of particle paths! This is a completely
geometric result, independent of any association with proba-
bilities. Of course, for experimental purposes the density of
paths can be interpreted as a particle probability density, but
no inherent randomness in nature is thereby implied.

The bottom line is that QED scattering is fundamentally
about paths.

Our STA formulation reveals another aspect of QED that
has been generally overlooked and may be fundamental;
namely, the existence of zitter solutions and the possibility
that they may describe a fundamental feature of the electron.
As we have seen, zitter wave functions with opposite chirality
can be obtained from a general wave functionΨ by projection
with a lightlike zitter boost

Σ± = γ±γ0 = (γ0 ± γ2)γ0 = 1± σ2. (167)

Thus, for Majorana states introduced in (75), we obtain

Ψ±(x) = Ψ(x)Σ± = (ρeiβ)1/2RΣ±, (168)

where, as before, R = R(x) is a general spacetime rotor,
though we may wish to make the phase explicit by writing
R = Veiφ. Then the β-factor can also be incorporated into the
rotor R, to give us

eiβ/2VeiφΣ+ = Veiσ3φeiσ2β/2Σ+, (169)

because the Σ+ factor converts it to a rotation:

eiβ/2Σ+ = eiσ2β/2Σ+ = Σ+eiσ2β/2. (170)

Note that the β-rotation will occur before the phase-rotation
in expressions for local observables given below. Thus, the β-
factor tilts the spin vector before the phase rotation in the spin
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plane. In other words, it is a ‘‘geometric tilting factor.’’ At last
we have here a clear geometric meaning for the parameter β!
And we have already noted that β is inextricably connected
with spin as shown by the conservation law (96) and its
appearance in Pauli-Schrödinger theory in Section V.

In the next two Sections we see how these puzzling features
of β suddenly make perfect sense with a simple adjustment in
the Dirac equation with far-reaching physical implications.

VI. ELECTRON ZITTER
Soon after Dirac’s spectacular success in accounting for elec-
tron spin and the hydrogen spectrum, it was discovered that
the electron and its antiparticle were conjoined in the Dirac
equation like a pair of Siamese twins. Though this was touted
as a fabulous prediction as soon as the positron was discov-
ered, the doctors of quantum mechanics concluded that the
twinsmust be surgically separated. The diagnosis and surgical
procedure is most completely explained by early practitioners
such as Furry and Oppenheimer [33]. The eventual outcome,
of course, is known as QED today.

In this Section we reexamine the anatomy of the Dirac
equation to identify structural features that can guide a cleaner
separation of the twins. In particular, we identify zitter as the
‘‘beating heart" of the electron and note that it has been split
in two in the standard twin separation, only to be ‘‘sewn back
together" in QED. Consequently, we introduce a new surgical
procedure that highlights zitter as a central property of the
electron.

Dirac’s strong endorsement [34] of Schrödinger’s zitterbe-
wegung [35] as a fundamental property of the electron has
remained unchallenged to this day, though it plays little more
than a metaphorical role in standard quantum mechanics and
QED. However, evidence is mounting that zitterbewegung
is a real physical effect, observable, for example, in Bose-
Einstein condensates [36] and semiconductors [37]. Analysis
with a variant of the model proposed here even suggests that
zitterbewegung has been observed already as a resonance in
electron channeling [10], [38]. That experiment should be
repeated at higher resolution to confirm the result and identify
possible fine structure in the resonance [39].

Theoretical analysis of zitterbewegung, or just zitter, re-
quires a formulation in terms of local observables. We have
already noted that the zitter frequency is inherent in the phase
of the Dirac wave function. But Schrödinger claimed more,
namely, that it is to be interpreted as a frequency of position
oscillations at the speed of light about a mean velocity, and
it has been further claimed that association of electron spin
with circular zitter was implicit in his analysis [40].

Fortunately, the adjustment required to incorporate zit-
ter into standard Dirac theory is fairly straightforward, so
we can be brief. Accordingly, we define the Zitter Particle
Model(ZPM) to restore those fluctuations. More generally,
we see that lightlike zitter velocity factors the Dirac La-
grangian into separate electron and positron parts.

Revision of the Dirac equation to describe an electron with
lightlike paths can be neatly formalized with the projection

operators in (168). Zitter boosts possess the reversion, idem-
potence and orthogonality properties

Σ̃± = Σ∓, (Σ±)
2 = 2Σ±, Σ±Σ̃± = 0, (171)

as well as

Σ± − Σ̃∓ = ±2γ2γ0 = ±2σ2, (172)

which specifies the timelike plane of the zitter boost. Con-
sequently, we have lightlike local observables for electron
current:

1
2Ψ+γ0Ψ̃+ = Ψ+γ0Ψ̃ = Ψ(γ0 + γ2)Ψ̃ = ρu, (173)

and for spin bivector:

1
2Ψ+iσ3Ψ̃+ = Ψ(γ0 + γ2)γ1Ψ̃ = ρeiβue1, (174)

or, for S = isu,

1
2ℏΨ+iσ3Ψ̃ = 1

2ℏΨγ1γ+Ψ̃ = ρeiβS. (175)

The bottom line is a claim that observables of the wave
function Ψ+(x) describe a congruence (or fibration, if you
will) of lightlike helical paths with the circular period of an
electron clock. Next we aim to extract individual fibrations
from thewave function to create awell-defined particlemodel
of electron motion.
We assume that the lightlike helical path of a fiber in the

wave function has a well-defined center of curvature with a
timelike path with velocity v = v(τ) that we identify as a
Center ofMass (CM) for the electron. Accordingly, we regard
the electron as a particlewith intrinsic spin and internal clock.
A classical model of the electron as a point charge circu-

lating with a lightlike velocity u(τ) around a center of mass
with timelike velocity v(τ) identified with the Dirac current
has been proposed independently by Martin Rivas [41]. It is
in general agreement with the zitter model developed here.

A. ZITTER PARTICLE MODEL
It should be recognized that the Dirac equation by itself
does not imply any relation of the wave function to electron
velocity. A fundamental question in Dirac Theory, therefore,
is how to relate observables in the Dirac equation to particle
position or path. The zitter particle model (ZPM) presented
here models electron velocity as a lightlike vector and defines
a complete set of local observables consistent with that.

We have seen that the hand of the electron clock rotates
with the zitter frequency, so it is natural to identify the velocity
of circulation with the vector e2 while e1 is the direction
of the zitter radius vector. Since there are two senses to the
circulation corresponding to electron/positron, we have two
null vector particle velocities:

e± = v± e2 = Rγ±R̃, with γ± = γ0 ± γ2. (176)

It suffices to restrict our attention to the electron case and
redefine the local observables to incorporate zitter. Our choice
of sign here is a convention in agreement with [10].
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FIGURE 2. In the Zitter Particle Model (ZPM) the electron path is an
oriented lightlike helix with an opposite orientation (chirality) for electron
and positron.

Accordingly, we define the electron’s zitter velocity u by

u = Rγ+R̃ = v+ e2 (177)

and we define the spin bivector S introduced in (174) by

S =
ℏ
2
Rγ1γ+R̃ = hu, where h =

ℏ
2
e1 (178)

is identified as the hand h = h(τ) of the electron clock.
Note that the null velocity u2 = 0 implies a null spin

bivector S2 = 0. Using the identities

ue1 = e0e1 + ie3e0 = ie3u, (179)

we can write S in the several equivalent forms:

S = isu = hu = (h+ is)v = hv+ S. (180)

To further designate the vector h, let me coin the term spinet
(that which spins) as counterpart of the ‘‘spin" (vector) s. In
the same spirit let me call S the electron spindle and note how
it integrates spin and spinet into a single mechanism. The
overbar designates a zitter average, that is, an average over
the zitter period τe = 2π/ωe. So the linear velocity v = ū is
an average of the chiral velocity u, and, since h̄ = 0, the spin
bivector S = ivs is the zitter average of the spindle S.

B. ZITTER KINEMATICS
The electron’s local observables are now restricted to a co-
moving frame attached to the particle path:

eµ = eµ(τ) = RγµR̃, (181)

where R = R(τ) is a rotor with spin vector s = (ℏ/2)e3 and
spin bivector S = isu as defined above. We note from (202)
that its angular velocity is specified by the bivector

Ω ≡ Ω(z(τ)) = 2ṘR̃, (182)

so
ėµ = Ω · eµ (183)

on the electron path, as illustrated in Fig. 2.
As developed to this point, our Zitter Particle model has

much in common with classical models for a ‘‘particle with
spin’’ considered by many authors [10], so it is of interest
to see what they can contribute to our analysis. It is reassur-
ing to know that the self consistency of those models was
established by derivation from a Lagrangian in [10]. Since
the kinematic details align perfectly with our present model,
we can restrict our attention to the key kinematical equation
studied there. In particular, the relevant equation of motion
for the rotor R = R(τ) has the strange but simple form:

ℏṘγ+γ1 =
ℏ
2
ΩRγ+γ1 = pRγ+ + iβR. (184)

Its interpretation is greatly facilitated as an equivalent equa-
tion in terms of local observables. Namely,

ΩS = pu+ iβ, (185)

where (178) gives us S = hu = (ℏ/2)e1u. The bivector part
of this expression gives us the spin equation of motion:

Ṡ = Ω× S = p ∧ u. (186)

And the scalar part gives us an expression for particle energy:

p · u = Ω · S = ḣ · u > 0. (187)

We cannot divide (185) by the null vector u to solve for p,
but we can divide by v to get a comparable expression for
momentum

p = (p · v)u+ Ṡ · v. (188)

Accordingly, we can identify the coefficient for the first term
as a (possibly variable) dynamical mass,

p · v/c ≡ md , (189)

while the second term describes intrinsic angular momentum
in the zitter that we call spin momentum:

q ≡ Ṡ · v = −v · Ṡ. (190)

By the way, (184) also gives us an explicit expression for
acceleration of the zitter velocity

u̇ = Ω · u = p · S. (191)
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Finally, to complete the analysis of (185), we use (180) to
solve its pseudoscalar part for the parameter β = β(z(τ)) as
a function of the particle path:

β = ⟨Ωsu⟩ = u · Ω · s = u̇ · s = u · ṡ. (192)

This is our first clear clue for a physical interpretation of β,
expressing it as a relation between electron spin and velocity.

Since the spin momentum is an unfamiliar concept in con-
ventional quantum mechanics, it will be worth our time next
to examine its properties. Using S = ius we get

q · v = (ṡ ∧ u+ s ∧ u̇) · v = (ṡ ∧ u) · v = 0. (193)

Spin and kinetic momenta are orthogonal to one another,
because

q · v = (Ṡ · v) · v = Ṡ · (v ∧ v) = 0. (194)

Hence, (188) gives us

p2 = (mecv)2 + (Ṡ · v)2 = m2
e c

2 − (s ∧ u̇)2. (195)

This suggests that

−(s ∧ u̇)2 = (Ṡ · v)2 = −(p ∧ v)2 (196)

is a measure of energy (or mass) stored ‘‘in’’ an accelerated
electron. Also, it should be understood that the spin momen-
tum term Ṡ · v = v̇ · S describes linear momentum due to
internal angular momentum, like a flywheel in a macroscopic
moving body.

The ZPM is not complete until we specify its kinematics re-
lating the particle velocity to its spacetime path. Accordingly,
we define

re = λ̄ee1 with λ̄e =
ℏ

2mec
= c/ωe (197)

as the radius vector for circular zitter at the speed of light. The
zitter center follows a timelike path z = z(τ) with velocity
v = ż. Hence, the particle path z+ = z+(τ) with lightlike
velocity

u = ż+ = v(τ) + ṙe(τ) (198)

as depicted in Fig.2. This integrates to

z+(τ) = z(τ − τc) + re(τ), (199)

where, as we shall see, the time shift τc depends on the energy
from external interactions. Note that the time variable is the
proper time of the zitter center.

An especially attractive feature of the ZPM is the physical
interpretation it gives to e1 and e2 as the hand of an electron
clock and its rate of motion. From (197) see that e1 = r̂e is
the unit radius vector of the zitter, and from (177) we see that
e2 = ṙe is the zitter velocity.

To understand the mechanics of the electron clock we
introduce the concept of canonical momentum next.

C. CANONICAL MOMENTUM
The real Dirac wave function has the canonical form given in
(47) by

Ψ = ρ
1
2 eiβ/2R = Ψ(x), (200)

and we spent the bulk of this paper showing how its eight
degrees of freedom can be interpreted in terms of local ob-
servables. Let us review the main points to see how they relate
to the problematic parameter β and the electron’s canonical
momentum.
We have assumed that the electron path is embedded

smoothly in the spacetime manifold, so the comoving frame
of local observables extends to a field

eµ = eµ(x) = RγµR̃, (201)

and the dynamics of the local observables is determined by
the linear bivector-valued function

Ωµ = Ωµ(x) = 2(∂µR)R̃, (202)

so
∂νeµ = Ων · eµ. (203)

Components of the canonical momentum are then given by

Pµ = Ωµ · S, (204)

and the spin dynamics is specified by

∂µS = Ωµ × S, (205)

where S = hu in accordance with (180).
The rotor factor R = R(x) in the general Dirac wave

function is normalized to RR̃ = R̃R = 1. It has a unique
decomposition into the product

R = UVU1U2, (206)

where rotor V = (vγ0)
1
2 defines a boost to the electron’s

center of mass, with spatial rotors

U = U(x) = e−iσ3φ/2 (207)

and
U1U2 = e−iσ3φ1/2e−iσ1φ2/2 (208)

that can be parametrized with scalar phase functions
φ(x), φ1(x), φ2(x), thus with three degrees of gauge free-
dom.
Let’s refer to R as the electron’s canonical rotor, to U as

its electric rotor and to U1U2 as its magnetic rotor. For the
record, the boost rotor is discussed in [3], which gives the
general result

V = (vγ0)
1
2 =

1 + vγ0
[2(1 + v · γ0)]1/2

. (209)

For quantized states indexed with familiar quantum num-
bers n, ℓ,m employed in atomic physics, we can write the
most general rotor for an electron in the form

Rn,ℓ,m = UnVUℓUm. (210)
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We will conclude in later Sections that these quantum num-
bers characterize the electron’s magnetic field under any cir-
cumstance, not just when it is an atomic state.

A further simplification is worth considering, namely omit-
ting the boost in (209) to reduce (210) to the spatial rotor

Un,ℓ,m = UnUℓUm. (211)

with all the same quantum numbers but described in an
inertial system specified by the constant timelike vector γ0.
These details are necessary for themost general electron state.
But the essential part for electron motion is specified by the
canonical momentum and the spin bivector as described next.

Along the electron particle path with velocity v = v(τ),
eqns (204) and (205) reduce to

P · v = Ω · S = Ω · (hu), (212)

and
Ṡ = Ω× S, (213)

where Ω = Ω(τ) = Ω(z(τ)) = vµΩµ(z(τ)). Applying the
vector derivative evaluated on the particle path we have □ ∧
v = (v d/dτ) ∧ v = vv̇ to get

Ω = vv̇+ (P̂ · v)e1u, (214)

with |P| = ℏ/2. Hence, for motion of the ‘‘electron clock
hand’’ h = e1ℏ/2 we have

ḣ = (v̇v) · h+ P · v(e1u) · e1
= −(v̇ · h)v+ (P · v)u. (215)

This shows the role of the canonicalmomentumP in evolution
of the electron clock explicitly. In the electron rest frame this
reduces to a generalization of (74)

e1(τ) = γ1 eiφ(τ) = Uγ1U†, (216)

where rotor U = U(z(τ)) is given by (207) and φ(τ)
generalizes the free particle phase ωeτ .
Remarkably, our model of the electron as a particle with

circular zitter was proposed by Slater [42] well before the
Dirac equation and Schrödinger’s zitterbewegung. His argu-
ment linking it to the null Poynting vector of the photon may
also prove prophetic. Of course, we get muchmore than Slater
could by embedding the model in Dirac theory.

D. EXTENDED LORENTZ FORCE
At last we are prepared to consider specific implications of
the ZPM with profound physical significance.

Electron momentum p = p(x − z(τ)) is a gauge invariant
vector field p = P − e

cA independent of the density ρ. That
means it is invariant under a gradient shift P→ P′ = P+□ θ
of the canonical momentum.

The momentum curl has the strikingly simple form

□ ∧ p = −e
c
F +□ ∧ P, (217)

where F = □∧A is the external electromagnetic field. Since
p = p(z(τ)) on the particle path, we have

v ·□ p = ṗ and □ p = vṗ. (218)

Thus, for momentum on the particle path we have

v ∧ ṗ = −e
c
F + v ∧ Ṗ, (219)

Accordingly, on dotting (219) with the velocity v, we get the
relativistically invariant Lorentz force law

ṗ =
e
c
F · v+ q̇, (220)

with an additional term q̇ that we interpret as momentum
released to the vacuum by acceleration of the electron due
to the Lorentz force.
Based on the analysis in preceding subsections, we propose

identifying q with the spin momentum defined by (190) and
propose the specific form

q = q(z(τ)) ≡ p− P = −sβ̇. (221)

This agrees with identifying

T (s) = −ρsβ̇ = ρv · (s ∧□β) (222)

as the flux in the spin direction derived from the Tetrode
tensor (123). We will confirm this conclusion with a more
direct argument later on. And we shall see that the Lorentz
force also has a spin dependent component responsible for
the Stern-Gerlach effect.
Let us call (220) the Extended Lorentz Force (ELF) equa-

tion, because it extends the interaction F · v which is orthog-
onal to velocity v with a component that is collinear with the
spin s. Note that this generalization of the Lorentz force offers
a simple solution to the long-standing problem of explaining
why atomic states do not radiate away all their energy. It tells
us that energy released by an accelerating electron is always
orthogonal to the force and along the spin direction.
Later we will identify qwith the momentum released by an

electron when it emits a photon. Thereby we finesse the no-
torious difficulties of the much studied Lorentz-Dirac equa-
tion [43], such as pre-acceleration, and runaway solutions.
Instead, radiative reaction is generated directly by photon
production, with energy (mass) carried with momentum q.

E. ZITTER DYNAMICS
Electron dynamics is governed by the Dirac equation (93),
which has been completely reformulated in terms of local
observables in (126) to make manifest its physical structure
and interpretation. We repeat that equation here because of its
seminal importance:

ρ(P− e
c
A)eiβ = mecρv−□(ρeiβS). (223)

As we shall explain, this enables a rigorous and transparent
interpretation of Dirac theory without any modification or
approximation. Let us call it the chiral Dirac equation to
emphasize its equivalence to a conventional formulation in
terms of the spinor wave function given by (46), albeit using
STA instead of an equivalent matrix algebra.
Chiral Dirac (223) is a multivector equation, so it can be

separated into vector and trivector parts as two independent
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equations. It appears that the physical content of this equation
resides entirely in its vector part, where the Dirac current
resides. The trivector part seems to be a consistency constraint
among the local observables andwe need not discuss it further
here.

We interpret the vector part of Chiral Dirac as a constitu-
tive equation for the energy-momentum content in the Dirac
current:

ρ(P− e
c
A) cosβ = mecρv−□ · (ρeiβS). (224)

We hold that this equation applies for all values of cosβ
with positive values for the electron and negative values for
the positron. Thus we have a unified model of the electron
as a single entity with a range of energy-momentum states
given by cosβ. Here at last we can understand the physical
significance of the mysterious parameter β.
The terms spinet and spindlewere introduced to emphasize

significance of the null bivector S = hu given by (180).
In particular, it follows from (170), that S is eigen(bivector)
for a rotation with the duality factor eiβ as its eigenvalue, as
specified by the equation

eiβS = ReSR̃e = R2
eS. (225)

The unique solution to this equation is the rotor Re given by

R2
e = eXβ , where X = h/s = e1e3 (226)

is the bivector generator of rotations in the spin-spinet plane.
Let us call them chirality rotations.

Note that the chirality rotation (225)

ReSR̃e = RedR̃eu = eXβS = h(β)u ≡ S (227)

can be interpreted as a tilt of the zitter spin axis s(τ) with
respect to the plane of the charge circulating with velocity
u(τ), as illustrated in the description of the spindle in Fig. 3.
For a polarized electron with velocity v(τ) collinear with the
spin s(τ), the circulating charge generates a helical path with
energy proportional to its pitch = cosβ, which gives us at
last a clear physical interpretation for the parameter β; This
makes it clear that the electron properties of spin and zitter
reside entirely in the spindle S = S(β), where the underbar
notation emphasizes a functional dependence on the chirality
angle β.

The electron’s spindle ring has two independent degrees of
freedom. The twofold degeneracy was lifted by Schwinger’s
famous calculation for the electron’s anomalous magnetic
moment, raising the circular orbit to a toroidal tube with
radius αe/2π. See Fig. 4.

F. CONSERVATION LAWS
We see the full significance ofβ emergewhenwe identify it as
a measure of stored energy in the chiral Dirac equation (224).
We identify the left side of that equation with momentum
density

ρp ≡ ρp cosβ = ρ(P− e
c
A) cosβ. (228)

FIGURE 3. Spindle structure of an electron: Picture the Energy Shell of
the electron as a sphere of radius —λe with two orthogonal cross sections.
Section (a) depicts the Spindle ring with a pole fixed as a reference point,
and the electron position r located on an Energy Bubble generated by
accelerating the electron. Section (b) depicts the tilt angle β measuring
energy ℏω ≤ ℏωe in the bubble and its direction of propagation along the
spin s. (not to scale).

The gauge invariant factor (P − e
cA) includes a vector

potential A = A(x) for all external interactions. Specification
of the scalar density ρ = ρ(x) is discussed in a later Section.
Wewill identify the factor cosβ(x) as ameasure of the energy
extracted from the electron’s momentum when it accelerates.
This is in accord with the little known virial theorem (161)
implying that cosβ(x) is a measure of energy density in the
vacuum.
With the factor β incorporated into the spindle (227), we

can interpret (224) as an equation for momentum density
balance:

ρp = mecρv−□ · (ρS). (229)

Taking the divergence of this equation and using the conser-
vation law (78) for the Dirac current

□ · (ρv) = 0

along with the identity

□ · [□ · (ρS)] = (□ ∧□) · (ρS) = 0

then gives us the Gordon conservation law:

□ · (ρp) = 0. (230)

We interpret this as a conservation law for energy-momentum
shared between electron and its ambient electromagnetic
field.
The chiral Dirac equation (229) is a field equation. Ex-

tracting the particle path with velocity v = v(τ) as a fiber
in the field we get an explicit expression for spin dependence
of electron momentum:

p = mecv+ Ṡ · v+ S ·□ ρ. (231)

This is a completely general consequence of the Dirac equa-
tion without any approximation. Note that the last term mea-
sures deviations from the particle path as expected from a
Stern-Gerlach force on electrons.
Ambiguities in the physical interpretation of the Dirac

current ρv have bedeviled quantummechanics since its incep-
tion. In (229) we identify the left side with Center of Mass
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FIGURE 4. In a plane rotating with angular velocity ω1σ3 around the CM,
the electron’s lightlike circular orbit lies on a toroidal surface called the
electron energy shell that projects to the orbital plane as an ellipse with
antipodes a and b. Fig. from [44],

(CM) flow. In contrast, we identify □ · (ρS) with a flow of
charge, which is expressed in terms of a divergence because
the electron charge is displaced from the CM by the zitter
radius λ̄e and circulates around it at the speed of light.

The chiral Dirac equation (224) is a field equation defined
in terms of smooth functions f (x) of spacetime points x, while
electron particle paths are embedded as fibers in the field.

We have seen that zitter can be incorporated into the Dirac
equation simply by replacing the timelike spin bivector S =
isv with the null spin bivector S = isu given by (180). With
this replacement, zitter is immediately incorporated into the
formulation and analysis of conservation laws for energy-
momentum, angular momentum and spin in Section IV, so
they are ready for any application to the electron. Of course
the ELF equation is just the energy-momentum law discussed
above. We leave detailed treatment of orbital angular mo-
mentum and spin conservation for another time, though the
fundamentals are already formulated in Section IV.

VII. FROM ZITTER TO ZILCH

As first shown in [1], the Faraday bivector F = E + iB can
be put in the unique invariant form:

F = feiβ = f cosβ + if sinβ, (232)

where the exponential specifies a duality transformation
through an angle given by

tan 2β =
2E ·B
E2 −B2

=
iF ∧ F
F · F . (233)

Note that (232) determines a rest frame in which the electric
and magnetic fields are parallel without using a Lorentz
transformation. In addition, the squared magnitude of f is

f2 = [(E2 +B2)2 − 4(E×B)2]
1
2 , (234)

which is a tensor invariant of the Poynting vector for F :

Tµ = 1
2 F̃γ

µF = 1
2 f̃γ

µf . (235)

This belongs to a family of invariants of the electromagnetic
field called Zilch tensors [45], [46]. All these tensors are
independent of the value for the angle β = β(x) in (232).
Ironically, that angle is the most important feature of zilch, so
we give it a special name: zilch angle or zilch function or just
zilch and propose to designate it with a special symbol, such
as

ϕ = ϕ(x) or Φ = Φ(x), (236)

where the phi symbols are suggestive of the vacuum. One
reason the significance of this quantity has been overlooked
heretofore is that its value depends on coupling the Dirac
equation with its ambient EM field, and that coupling is not
often considered in classical EM theory.
Indeed, we shall show that the zilch angle can be identified

with the function β = β(x) in the canonical form (47) for the
Dirac wave function, so we can write

ϕ = ϕ(x) ⇔ β = β(x) (237)

interchangeably. For reasons explained in preceding Sections,
this implies immediately that zilch can be interpreted as a
measure of energy density in the electromagnetic vacuum.
That calls for analysis of the β role in energy exchange
between electron and field which we consider below.
Like Maxwell’s equation, the Dirac equation is a field

equation defined on all of spacetime. The zilch function
β = β(x) = β(x, ct) defines a mapping between these two
equations as well as an embedding of particle paths in the
Dirac field. This Section presents details of that embedding
for a comprehensive theory of the electron.

A. DYNAMICS WITH ZILCH: QUANTUM FORCE &
CURRENT
Recall that v = v(τ) = e0 is the CM velocity, while u = u(τ)
is the particle velocity of the electron charge circulating in a
spacelike plane specified by the unit bivector e2(τ)e1(τ) =
e2e1 = ie3e0 designating electron spin direction. This deter-
mines a unique comoving frame attached to the electron path.
Let’s call it the electron inertial frame. Then, without loss of
generality, we can use (209) to map the electron path to the
lab frame specified by γ0, putting the Dirac equation in the
form given by (151):

(∂t + c∇)Ψiℏ = mec2Ψ∗ + e(A0 −A)Ψ, (238)
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FIGURE 5. The lightlike helical path of an electron with zitter radius —λe,
constant speed v and zitter period τe.

where the zilch parameter β makes an explicit appearance as
a function β = β(x) in the mass term with

Ψ∗ = γ0Ψγ0 = e−iβΨ. (239)

This confirms Boudet’s demonstration that zilch is an es-
sential feature of the Darwin solutions for hydrogen. And
it explains how the virial theorem for electron energy (161)
applies to an inertial system.

⟨E⟩ = mec2⟨cosβ⟩ = mec2
∫
d3x cosβ, (240)

further supporting the view that cosβ(x) is a measure of
energy density in the field of an electron.

By the way, the association of γ0 with electron mass given
by (239) clarifies another puzzling feature of quantum me-
chanics, namely the physical significance of the Hermitian
conjugateΨ∗. Moreover, we shall see that γ0 can be identified
with the velocity of the electron in a spacetime aether.
For an inertial frame with v = γ0 the spin bivector S in

(180) splits into spatial vector and bivector parts:

S = isu = isvvu = isv(1 + v ∧ u) = is− is ∧ u, (241)

which reduces to the formally complex vector

S = is+ s× u, (242)

which we refer to as inertial spin.
Having decided on the primacy of inertial systems spec-

ified by the timelike vector v = γ0, we are free to change
notation and represent the electron CM velocity by v = v(t)
and speed by v = |v|. Then, for constant speed the electron
traverses a helical path, as shown in Fig. 5,

Ṡ = −i(s ∧ u̇) = s× u̇. (243)

The proper velocity of electron charge is a lightlike null vector
u = u(τ). However, its projection into an inertial frame is a
scalar u2 = u20 − u2 = 0. Accordingly, the zitter velocity
u = u(τ) = u(ct) ≡ u(t) executes a helical screw motion
along its spin vector s. For constant acceleration, the path
is given by Fig. 5. The general spindle structure of electron
states is described in Fig. 3 and specified by equations (225)
and (226).

FIGURE 6. Lightlike helical path of an electron with constant acceleration
from rest. (Figure from [48] )

With these preliminaries setting the stage, we are prepared
to address the fundamental problem of evaluating the Dirac
equation on a particle path. Accordingly, in an inertial frame
the vector derivative of the wave function on a particle path
reduces to

(∂t + c∇)Ψ = Ψ̇, (244)

whence the Dirac equation (238) reduces to

Ψ̇ iℏ = mec2Ψ∗ + e(A0 −A)Ψ, (245)

with Ψ = Ψ(z(τ)) = Ψ(z(t), t). Here at last we have a com-
pletely general version of the Dirac equation with the zitter
incorporated in the structure of the wave function to specify
electron paths. To emphasize its fundamental importance let
us call it the zitter-Dirac equation. Our next task is to make
its structure explicit with specific solutions so we can study
their implications.

But first it should be noted that there are no probabilities
involved in this equation, because it describes a specific path
rather than the ensemble of paths considered by the Copen-
hagen interpretation. To be sure, there is a measurement prob-
lem, but now we see Heisenberg’s uncertainty principle as a
consequence of the electron’s zitter radius, a purely classical
concept.

Another consequence of the classical interpretation for
zitter-Dirac is that there is no question of gauge invariance.
For eA0 can be identified as an electric potential, while eA
is a momentum potential, just as Maxwell surmised in his
original formulation of electrodynamics [47], to emphasize
the interpretation of the vector potential eA as momentum
imparted to the electron by the vacuum. Of course, electron
and positron have opposite chirality expressed by opposite
signs of the electric charge.

A general method for solving the zitter-Dirac equation that
elucidates its geometric structure is given by the classical
Frenet equations for 3D curves. As first described in [49],
that is most efficiently done by introducing a comoving frame
of local observables {ek = UσkŨ | k = 1, 2, 3} with the
equation of motion

ėk = ω × ek (246)
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and angular velocity

ω = κ1e3 + κ2e1 = U(κ1σ3 + κ2σ1)Ũ , (247)

where κ1 is the (first) curvature and κ2 is the (second) cur-
vature or torsion of the curve. Finally, the equation of motion
can be reduced to a simpler spinor equation:

U̇ = 1
2Ui(κ1σ3 + κ2σ1). (248)

Call it the spinor Frenet equation.
In the general case, the rotor U = U(t) factors into a

product U3U1U2 of three simple rotors, but for constant spin
s it can be reduced to two rotors with scalar phase angles
θm = θm(t) given in

U(t) = U1U2 = e
1
2 θ1iσ3e

1
2 θ2iσ1 . (249)

Accordingly, we can now write the rotor for an electron with
constant spin in the explicit form

U(t) = e
1
2 iωete

1
2 ie1β(t), (250)

and its path for constant speed is illustrated in Fig. 5, without
showing a possible phase shift when the signal is emitted. The
rotor for constant acceleration is illustrated in Fig. 6

The electron spindle structure specified by these equations
is described by Fig. 3 in Section VI. We emphasize, however,
that the zilch function β = β(x) = β(x, t) is a scalar-valued
field that permeates all of spacetime with values β = β(τ)
on the path of a zilch signal. Thereby it may serve as an
electromagnetic aether, much as Dirac [2] and others have
proposed.

B. BIRTH OF A PHOTON
In the preceding subsection we described motion of an elec-
tron in an inertial frame with zilch functions given by (249)
and (250). In subsequent Sections we will use the same
functions to describe zilch signals emitted into the aether by
an electron at rest. Moreover, we will freely switch between
these alternative interpretations when convenience and con-
text permits.

Here we apply the same equations to describe production
of a photon from a freelymoving electron. To set the stage, we
interpret kinetic energy in free electron zitter as a dynamical
mass

mec2/2 = Ωe · S = (−iωe) · (is) = ωe · s = ℏωe/2. (251)

Then the classical energy equipartition theorem tells us that
the total energy is composed of equal parts kinetic energy K
and potential energy V given by

E = mec2 = Ke + eVe = ℏωe, (252)

where V = eVe = e2/2r is potential energy with respect to
the electron CM. This is consistent with the energy equipar-
tition theorem derived from the Dirac equation (240).

When an electron is accelerated, the force law (220) re-
quires that a packet of energy (a photon) be released to the
vacuum to maintain the balance of bound energy (189). Note

FIGURE 7. Spindle structure of a photon: Picture the photon energy shell
as a sphere of radius —λe with two orthogonal cross sections. Section (a)
depicts the spindle ring for a photon composed of an electron-positron
pair e+e− with fixed separation 2r circulating at the speed of light with
polarization angle φ0, where the range 0 ≤ φ0 ≤ ±π designates left and
right circular polarizations. Section (b) shows the photon vector k and tilt
angle β in the photon bubble filled with energy ℏωe (not to scale). When
the bubble is filled with energy 2mec2 the photon splits into an
electron-positron pair.

that de Broglie realized that this energy release is equivalent to
creating a positron with negative energy (−e)Ve = −e2/2r .
That will be recognized as a version of Dirac’s ‘hole theory’
argument to justify the existence of the positron, which was
surely the inspiration for de Broglie’s theory that the photon
must be composed of an electron-positron pair [50].
Though de Broglie persisted in his claim that the Dirac

equation must explain the photon, he was never able to bring
his argument to a successful conclusion. Here we show how
to realize de Broglie’s proposal with the zitter particle model
depicted in Fig.1 for both electron and positron. We simply
assume that both electron and positron have helical paths with
a common center, but separated with a spacelike interval less
than a Compton wavelength.
As described in Fig. 7, we assume that photon production

originates at the CM with the creation of an e−e+ pair with
dynamical mass

mγ ≡ me cosβ, (253)

where β is the chirality angle given by (228) and shown in
Fig. 3. In other words, the electron spindle generates a photon
with energy

Eγ = mec2 cosβ =
2e2

r
= ℏωγ , (254)

and the energy shift in the process of radiation is given by

E/ℏ = (−iω) · (iŝ) = ω · ŝ = ω ŝ = ωe ± ωγ , (255)

where the constraint ω ∧ s = 0 ensures that propagation of
the photon is aligned with the spin axis, while ± designates
opposite circulations. Thus, the electron spindle functions
as a circular antenna generating photons while its charge
circulates around the spindle ring.
As depicted on Fig. 5 for the rest frame of this electron-

positron system, the particle motion projects to a circle with
zitter radius λ̄e where electron and positron are located with
fixed angular separationφ0 and spin angularmomentum 2s =
ℏσ3.
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FIGURE 8. Picture the photon as a moving Spindle ring with angular
momentum ℏ that generates an electromagnetic wave with amplitude
normalized to its energy. (Figure from [48] with a different but related
interpretation)

.

Now we assume that the e−e+ segment embedded in the
photon ring, and the spin and charge stored within it, propa-
gates as a photon along a lightlike path with tangent vector k
and helical path like the one depicted in Fig. 8. It is amusing
to think of the e− and the e+ as terminals of a battery that
drives a current of constant energy ℏωγ around the ring.
As the photon moves, it generates an electromagnetic field

that can be represented algebraically by a vector potential

A = ωγ e eîkφ, (256)

with amplitude proportional to the frequency ωγ and phase
φ(t) = k ·z+φ0 with k ·z = ωt−k·z(t), while the initial phase
is set by a fixed vector ewith e ·s = 0.Note that the variables
for time t and frequency ωγ are set as initial conditions in the
instantaneous rest frame of the electron emitting the photon.
We note also that the photon carries energy ℏωγ ≤ 2mec2

with the limiting value given for pair production
The photon propagates at the speed of light with momen-

tum p = ℏk , so p2 = 0. The photon energy ℏωγ = p · v
is determined by the proper velocity v = v(τ) of the source
when it is emitted. Therefore, without loss of generality, we
can describe photon emission in the instantaneous rest frame
of the electron given by v = γ0, so we have the momentum
spacetime split pγ0 = ℏ(ωγ + k). Then from the rest frame
independence of our photon model we conclude that the
momentum of the emitted photon p = ℏk must be collinear
with electron spin s. Among other things, this general result
accounts for the headlight effect in cyclotron radiation.

We complete our picture of the photon by projecting its
lightlike path in spacetime into the spacelike path shown in
Fig. 8. That depicts the photon ring generating a circularly
polarized electromagnetic wave with various frequencies as
it propagates with velocity ck̂.

Finally, incorporating the toroidal structure of electron’s
anomalous magnetic moment described in Fig. 8 thickens
the photon ring. Thus, the field generated in each cycle is
akin to a smoke ring, so the whole wave train consists of
a chain of discrete ‘circulating smoke rings’ much like the
‘vortex atoms’ proposed by Lord Kelvin in the nineteenth

FIGURE 9. The photon can be modeled as an electron-positron pair
located on a toroidal ring (or energy shell) with a fixed angular separation
φ0 designating its polarization and complementary Villarceau circles for
electron and positron. The fusion of these circles with a suitable phase
lag generates a toroidal photon path.

century. That is consistent with the experimentally observed
countability of photons. The structure of the photon ‘smoke
ring’ is pictured in Fig. 9. Its toroidal path [51] is depicted in
Fig. 10 .
The problem remains to square our model of the photon

withwhat is known about electromagnetic radiation discussed
in [44]. As explained there, themotion of a photon is governed
by Maxwell’s equation

∂0F = −∇F , (257)

with the constraint F2 = 0. For a photon we can write F =
E + iB = E(1 + k̂), where the electric field E = ∂0A is
determined by the vector potential given by (256).
The photon field F = F(φ) has the same functional form

as a plane wave, but its phase functionφ = k ·z(τ) is centered
on a lightlike curve z = z(τ). Hence, the phase is given by
φ = ωt − k · z. and Maxwell’s equation (257) reduces to the
eigenvalue equation

kF = ±Fω, (258)

where the signs correspond to states of left/right circular po-
larization. Moreover, we can decompose F into the canonical
form

F = E+ iB = f Z , (259)

where
Z = Z(φ) = ρeiφ (260)

can be regarded as a complex impedance of the photon sin-
gularity, and f is a polarization bivector with various forms
given in [44]. In particular, we can write

f = ê eik̂φ0 = ê(cosφ0 + ik̂ sinφ0) = e+ ib, (261)

where φ0 is the polarization angle and f f † = 1. The parame-
ter ρ in (260) requires some explanation which we present in
the next Section.

Finally, we complete our model of the photon by mention-
ing a recent demonstration that the photon has a well defined
center of mass (CM) just like the electron [52]. Among other
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FIGURE 10. The grey line represents the photon’s axis of travel around
the toroidal flow. This is a left-circularly-polarised photon. The spin axis in
aligned with magnetic north N . Figure from [53]

.

things, this means that optical properties such as amplitudes,
phases and correlations (even quantum entanglement) can be
deduced directly from measurements of light intensity.

VIII. MASS AND ENERGY DENSITY
Newton supposed that some kind of medium is needed to
transmit gravitational interactions, but he wisely declined
to speculate about its properties. In the eighteenth century
Maxwell led the way in developing a theory of the vacuum
that culminated in an electromagnetic explanation for the
properties of light. Regarding the vacuum as a dielectric
medium with variable permittivity ε = ε(x) and permeability
µ = µ(x) at each spacetime point x, Maxwell’s condition for
the propagation of light in a vacuum is given by

εµ = 1/c2 = ε0µ0. (262)

From that starting point Seymour Blinder [54], [55] has
shown that polarization of the vacuum in the neighborhood of
a classical electron is uniquely determined by the very simple
assumptions that

(1) the energy density of the electron field is proportional
to the charge density, and

(2) the total energy in the field determines the electronmass

ε(r) = ε0 exp

(
λ̄c
r

)
, (263)

where

λc =
1

2

e2

mec2
= αeλ̄e (264)

is recognized as half the classical electron radius expressed
as a product of the fine structure αe and the zitter electron
radius λ̄e. Let us call it the Blinder ansatz.
This puts that λ̄e into new perspective as the radius of

vacuum polarization. Absorbing the constant ε0 into the units
defining electric charge, we interpret its inverse ε(r) as a
material density of the electromagnetic vacuum:

ρe(r) = ρe(x − ze(τ)) = ε−1(r) = e−λ̄c/r , (265)

where r = (x − z(τ)) · v is the classical retarded distance
from the position z(τ) of the electron’s Center of Mass CM.
Note that the position ze(τ) of Center of Charge CC is

separated from the CM by the zitter radius

|ze(τ)− z(τ)| = λe, (266)

and at that separation

ρe(ze(τ)− z(τ)) = e−λc/λe = e−αe (267)

can be interpreted as a dimensionless measure of the strength
of a vacuum singularity, which singles out the Dirac current
eρev, or more precisely, the fluctuating null current eρu spec-
ified by (177), as the source of the electron’s electric field.

Accordingly, we follow Blinder in identifying each elec-
tron as a singularity in the universal spacetime vacuum. The
ansatz explains how energy (aka mass) is stored in the vac-
uum. And we note that the extended Lorentz force (220)
serves as a mechanism for installing or removing energy in
the vacuum, in particular, for creating or absorbing photons.

To put the Blinder ansatz in context, we recall from (47)
and (206) that the Dirac wave function Ψ = Ψ(x) has the
general form

Ψ = ρ1/2eiβ/2R, where R = UVU1U2 (268)

is a unique factored form of the rotor R = R(x). We focus
our attention here on the factored form Ψ = ψR′, where the
factor

ψ = ρ1/2U(φ) = e−(α+iσ3φ) (269)

has the familiar form for the Schrödinger wave function given
by (131), but the rotorU = U(x) can be identified now as the
generator for the spinet, the hand of the electron clock given
by (207). On a particle path the variations of this phase in this
wave function are given byφ = φ(x−z(τ)), and governed by
the Dirac equation. That is well established in non-relativistic
as well as relativistic QM.

On the other hand, the physical significance of the scalar
factor ρ in (269) has long been a subject of intense debate,
in particular, as to whether it implies that QM is inherently
probabilistic. To resolve the issue, de Broglie claimed we must
be able to define an alternative wave function that does not
involve probabilities. But he was not able to show how to do
it. Let us see how the Blinder ansatz solves that problem.

A. REAL DE BROGLIE WAVES AND THE SUPERPOSITION
PRINCIPLE
For a single electron with density ρe(τ) = ρe(z(τ)) along its
path z = z(τ) given by (265), we define a wave function with
amplitude

ψe = ρ1/2e e−iφ/2 = e−(λc/r+iωeτ)/2 = ψe(r , τ). (270)

Let us call this a real de Broglie wave. The usual Schrödinger
wave function ψS has the same kind of complex function
form. Indeed, linearity of the Dirac equation allows a super-
position of solutions with a complex ‘Schrödinger’ factor

ψS = Cψe (271)

24 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3544654

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Hestenes, Gyromagnetics of the electron clock

that can be identified as a probability amplitude in accor-
dance with standard QM. It seems to have been overlooked,
however, that the probability amplitude ψS may have an
irreducible complex factor ψe with a physical interpretation
that does not involve probabilities.

That observation may be sufficient to resolve the con-
tentious debate between realist and subjectivist interpreta-
tions of QM. Of course, experiment must be the arbiter for
the debate. To be specific, we need experiments on single
electrons to measure their real de Broglie wave properties
directly. This is not the place for details, but a few remarks
will point to possibilities.

In particular, we look to measure the electron’s Blinder
density ρe = ψeψ

†
e in the vacuum near a fixed surface. One

well developed experimental domain where this is relevant
is diffraction of single electrons and photons. The key issue
there is the mechanism for momentum transfer between the
particle and diffracting slits [56]. A related issue is the role of
Blinder density and evanescent waves in the Goos-Hänchen
and Imbert-Fedorov beam shifts [57]. A third issue is the role
of real de Broglie waves in explaining tunneling and tunneling
times [29].

As a technical point about de Broglie waves, we note a
crucial feature of the ansatz is that ρ(ze(τ)) = 0 everywhere
along the electron path ze(τ), and thus at a single point on
any 3-D spacelike hypersurface. At that point the phase in
the wave function is undetermined, so it can be multivalued.
This mechanism serves also to pick out a particle path in the
pilot wave theory of Section V. Indeed, it has the surprising
implication that the quantum potential in pilot wave theory
vanishes on the electron path [44], with important conse-
quences that have not been previously considered.

It is no accident that the Blinder constant λc is simply
proportional to the London penetration depth in supercon-
ductivity [58], since both describe fundamental properties
of the electron. Some of the many implications have been
discussed by Hirsch [59]. Here we identify the London pene-
tration depth with the irreducible amplitude ψe in the electron
wave function (270), so it is an essential element in electron
structure.

We conclude that the electron is nature’s most basic super-
conducting current loop. Electron spin designates the orien-
tation of the loop in space. The electron loop is a supercon-
ducting LC circuit. The mass of the electron is energy in the
electron’s electromagnetic field.

B. SINGULARITY STRUCTURE

The Blinder function defined for the electron by (265) has
an alternative formulation suggesting a general property of
vacuum singularities not limited to the electron or photon.
Thus, we write the electron’s Blinder exponent in the form

λc/r =
e2/ℏc

mec/ℏv · (x − ze)
=

αe
ke · (x − ze(τ))

. (272)

This suggests that any particle with kinetic momentum k =
p/ℏ and position z(τ)will have a Blinder function of the form

ρ = e−αe/k·(x−z(τ)), (273)

so the particle is located at ρ = 0, and we drop the subscript
on ke to allow k to be a null as well as timelike. There is no
longer a suggestion here that the exponent is the Coulomb
potential of a charged particle. Here the fine structure constant
αe acts as a kind of general scaling constant for vacuum sin-
gularities, so it may play that role even in strong interactions,
as argued by MacGregor [60].
Like the electron, the photon is a singularity in the elec-

tromagnetic vacuum field with density ρ = ρ(z) plausibly
described by (273). That gives the photon a size and shape.
One might worry that the photon density (273) could prop-
agate like the electron’s Coulomb potential to influence the
photon’s surroundings in a way that has not been observed.
However, it is a general theorem [29] that influence from a
null surface, like the boundary of a photon path in the present
model, will propagate only along that boundary. In free space
the photon moves in a straight line. However, in a wave guide
or optical fiber, the path is shaped by the material walls that
modify the parameter ρ.

Note that incorporating the Blinder function into our model
of the photon increases the degrees of freedom for the vector
potentialA specified in (256) from 1 to 2. Thus, with e·k = 0
the polarization vector e can be generated by rotorU = U1U2

and written

e = Uσ1Ũ , (274)

as specified before by (208) and (210). This provides strong
theoretical grounds for predicting the existence of quantized
toroidal states for individual photons. Experimentalists will
be proud to announce that they got there first! It seems they
have already detected toroidal states in the diffraction of indi-
vidual photons [61]. However, that may be a beginning rather
than the end of the story, a presage of a richer landscape of
toroidal states in elementary particle theory to be considered
at another time.

IX. ZITTER-DIRAC EQUATION
Now we are prepared to bring our long investigation into the
physical interpretation of Dirac’s equation for the electron to
a definitive conclusion.

We reframe the analysis in Section VIIA to show how
directly the results flow from the Dirac equation itself.

We suppose now that when the zilch signal is received by
a near or adjacent electron with an aligned spin, a resonant
coupling of the zitter phases can be set up between the two
electrons that can evidently be identified with the quantum
force proposed and studied at length by Jorge Hirsch [59].

Free from external perturbation, the strength of the reso-
nant coupling by two electrons is not limited by distance. For
example, the electrons may be located on opposite plates of
a capacitor. Moreover, in an electric circuit the signals from
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FIGURE 11. Zitterbewegung oscillations in atomic states. (Figure from
[62]). Now we can understand them quantitatively as paths on a torus
generated by the electron’s anomalous magnetic moment.

similar pairs in a capacitor can be bundled collectively as fila-
ments of an electric current that carries energy but no charge.
We identify it as the displacement current that Maxwell pos-
tulated to complete his theory of electrodynamics. Though
this current carries no charge, it does generate a magnetic
field so it must play a role in electromagnetic induction.
Accordingly, we identify the zilch signal as the central line
of magnetic force connecting two electrons, in other words,
the quantum force. We explore the many implications of that
idea in the following Sections.

A. DISPLACEMENT CURRENT: ZILCH SIGNAL
As explained with (249), for constant spin the rotor equation
for a zilch signal can be written in the explicit forms

U(t) = e
1
2 θ1iσ3e

1
2 θ2iσ1 = e

1
2 iωete

1
2 ie1β(t) (275)

and its path for constant β is illustrated in Fig. 5, without
showing an initial phase shift when the signal is emitted.

For the de Broglie wave function (270), direct chiral pro-
jection onto the spindle gives us

Ψ(x, t) = ρe(x, t)
1
2 e

1
2 iωete

1
2 ie1β(t). (276)

This equation can be interpreted as an accelerating electron or
a magnetic zilch signal, depending on initial conditions. The
electron’s Spinet action can be pictured as a propeller with
variable pitch that drives the electron through the vacuum
zilch. The zilch signal can be identifiedwith theDisplacement
current ∂tD in standard electromagnetic theory. This has
simplifications first recognized by Dirac.

In 1951, Dirac published a short article entitled Is there an
aether? [2], [63] Therein he proposed that all inertial forces
are due to local motion of the vacuum, to which he ascribed
the velocity (in his notation):

U =
−q
mc

A with U2 = c2, (277)

where A is the relativistic version of Maxwell’s vector poten-
tial. This is completely consistent with the zitter-Dirac equa-
tion (245), so it is free from the problems of gauge invariance
that bedevils conventional quantum mechanics. We consider
its implications for Maxwell’s equation below.
The year 1951 is a good date to mark completion of

Dirac’s contribution to quantum mechanics with a salutation
to Maxwell.

B. ATOMIC STRUCTURE
For integer values of the zilch phase the wave function (276)
reduces immediately to a general solution for the Bohr atom
where n = 1, 2, ... is the principal quantum number:

Ψn(x, t) = ρe(x, t)
1
2 e

1
2 iωete

1
2 ie1βn(t). (278)

This is the solution depicted in Fig. 11. Generalization to
include angular momentum and magnetic quantum numbers
as specified by (210) is given by the wave function

Ψn,ℓ,m = Ψn(x, t)UℓUm. (279)

This, in fact is the form of the general solution of the
Dirac equation found by [30] and described in Section VB.
However, this presentation shows that the quantum numbers
⟨n, ℓ,m⟩ belong to the magnetic zilch field and not to the
electric charge of the electron. Indeed, there is clear exper-
imental evidence that zilch can be separated from charge in
diffraction, as discussed below.
On the other hand, the Dirac equation also determines

discrete paths for the electron in hydrogen, as specified at
length in [44]. The standard objection to these solutions is
that they are not energetically stable, because an accelerating
charge radiates away energy. Now, however, we see that
atomic electrons can be stabilized by the zilch field in which
they are embedded, as explained next.

C. RADIATION WITH ZILCH
Equation (276) is an exact solution of the zitter-Dirac equa-
tion, but it has been overlooked until the analysis of local
observables in this paper identified the zilch function β(x, t)
as the universal substrate of the electromagnetic vacuum. This
confirms the identification (221) of q = −sβ̇ as momentum
released to the vacuum by acceleration of the electron due to
the extended Lorentz force (ELF):

ṗ =
e
c
F · v+ q̇. (280)

Although this is relativistically invariant, we have seen that
projection into the electron’s rest system has special physical
significance. In Section V we saw that the Dirac equation
implies a force on an electron given by (140), which is worth
repeating here.

f = e[E+ v×B/c] +
e
mc

∇̀B̀ · s, (281)

and we confirm that this must be augmented by release of
momentum given by q = −sβ̇ as explained in Section VID.
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FIGURE 12. Spin transfer torque

[64]

D. SPINTRONICS
Spintronics (aka spin-based electronics) is concerned with
manipulation of spin degrees of freedom in solid state systems
along with electronic charge used in traditional semiconduc-
tor electronics. Its applications are vast, from information
storage and transfer to quantum computing, but it has lacked
a coherent theoretical foundation in quantum mechanics. In
a stunning tour de force that foundation has been supplied
in [64] and described brilliantly with two excellent figures:
Fig. 12 and Fig. 13. They found exact solutions of the Dirac
equation for a rotating frame using techniques that were avail-
able more than eighty years ago but obscured by a deficient
understanding of electron spin. Fortunately, the solutions are
much easier to derive from the zitter-Dirac equation (245),
and they take the form given by (276).

In particular, as shown in Fig. 13, an external Lorentz force
with cyclotron frequency ωc drives individual electrons with
opposite spins to circulate in opposite directions specified by
the factors

e±
1
2κie1ωc , (282)

where κ is a scalar constant specifying density of states for
the material in which the electrons are embedded.

E. STERN-GERLACH AND AB EFFECTS
Note that the last term in (281) is just what is needed to pro-
duce a Stern-Gerlach effect for electrons. It is a consequence
of the spindle structure of the electron. Problems involved
in detecting it experimentally have been deeply discussed
by Batelaan [65]. The solution promises to provide a funda-
mental device for separating spin up and down states of the
electron with rich implications for spintronics and quantum
computing.

Batelaan [66] has also conducted ground breaking research
on Aharonov-Bohm effect in Fig. 14. However, Wesley [67]
explains that the vector potential in the figure has a perfectly
satisfactory classical explanation as motional induction [68]
with a nonconservative force proportional to Ȧ. According
to the zitter Dirac equation (245) there is nothing problematic
about this force. The mistake in previous analysis was failure
to recognize that the Dirac equation implies that the Lorentz

FIGURE 13. Effects of mechanical rotation on spin currents. Solution for
the equation of motion is a superposition of two cyclotron motions with
different frequencies. The drift velocity of the up-(down-) electron is v+

d
(v−

d ) parallel to the azimuthal direction denoted by Ω. [64]

FIGURE 14. The AB effect is explained by a nonconservative force of
classical origin. [67]

force (which assumes the electron is a point charge) must be
generalized to an Extended Lorentz Force (ELF) to account
for electron zitter.

F. MARINOV MOTOR
The design and performance of the Marinov motor has been
thoroughly discussed by Phipps [69], [70]. But something
crucial is missing from the account, namely the spin of the
electron in the electric current. We can explain the signifi-
cance of that fact here and leave the rest to Phipps. The spin
of an electron free to move in a magnet naturally aligns itself
with the spins in the magnetic substrate. When the magnet
moves it generates an electric current J = ŝD = D which
we can identify with Maxwell’s displacement current. As we
have seen before, this current generates a magnetic field that
propagates in the vacuum.When the closed circuit of magnets
in Fig. 15 is given a push, it starts to rotate around a vertical
axis, and generates a displacement current ∂tD that drives a
current 2D = β̇ around a closed circuit and continuously
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FIGURE 15. The Marinov motor does useful work on mechanical systems
by extracting magnetic energy from the vacuum

[69], [70].

releases energy into the vacuum.

G. PARTICLE DIFFRACTION BY ZILCH
Maxwell–Dirac theory has unique implications for the prob-
lem of electron and photon diffraction, indeed, for particle
diffraction in general. The main problem with particle theo-
ries of diffraction is identifying a plausible mechanism for
momentum exchange between each diffracted particle and
the slits, a causal link which is missing from all accounts
of diffraction by standard wave mechanics and pilot wave
theory. For each scattered particle momentum transfer is di-
rectly observable, whereas the diffraction pattern conserves
momentum only as a statistical average. Evidently the only
way to account for this fact is by reducing diffraction to
quantized momentum exchange between each particle and
slit. To that end, a detailed analysis of optical diffraction
patterns explained by photon momentum exchange is given
by Mobley [56].

The double-slit diffraction pattern for light has been long
been regarded as prima facie evidence for wave-particle
duality. However, refinement of experimental technique in
recent decades has produced a growing body of evidence for
an alternative explanation for diffraction, namely: quantized
momentum exchange between particles and the diffracting
slits (Fig. 16).

The statistical build-up of a diffraction pattern one particle
at a time is essentially the same for photons and electrons [65],
[71]. A comparable result has been found for diffraction of
neutrons and atoms [72], [73] as well as molecules as large as
C60 [74], [75]. It even extends to diffraction of optical vortex

knots [61]. And our analysis in Section IV of excitations in
the free field of an electron suggests similar results in electron
diffraction.
The fact that the build-up of a diffraction pattern is essen-

tially the same for such a wide variety of particles calls for
a theory that explains the essential mechanism producing the
result. Such a theory has been constructed by maverick physi-
cist J. P. Wesley [76], though it has found little recognition in
the physics community despite its high relevance to the wave-
particle puzzle.
Since Wesley’s own account is so clear and straight-

forward, we can settle for a brief summary of significant
points here. Wesley shows that the 2-slit diffraction pattern
can be constructed from particle trajectories generated by the
scalar wave equation, given a suitable energy E = ℏω and
wave number k = p/ω.
Now we identify the universal zilch function Φ = Φ(x) as

the causal mechanism for diffraction. Then we suppose that
vanishing electric and magnetic fields outside the diffraction
slits are generated by a vector potential A = A(x) with □ ∧
A = 0, so locally, at least, A is a gradient. Assuming the same
for the canonical momentum P in (204) , we have a gauge
invariant phase gradient

□Φ = P− e
c
A. (283)

This provides a promising mechanism for quantized momen-
tum transfer in diffraction. For we know that quantized states
in QM are determined by boundary conditions on the phase.
Successful calculation of diffraction patterns along these lines
would provide strong evidence for the following claim: the
vacuum surrounding electromagnetically inert matter is per-
meated by a vector potential with vanishing curl. Evidently
the same mechanism can explain the extended Aharonov-
Bohm (AB) effect [66]. One concludes, then, that the causal
agents for diffraction and the AB effect are one and the
same: a universal vector potential permeating the vacuum (or,
Aether, if you will) of all spacetime, much as proposed by
Dirac [2].
Considering the similarity of electron and photon diffrac-

tion patterns, we should expect the same mechanism to ex-
plain both, especially if photons are composed of electron-
positron pairs as proposed in the preceding Section. Indeed,
the evolution of path density for the electron is determined by
the Dirac equation, which gives

□2Φ = −mecż ·□ ln ρ. (284)

For a photon with propagation vector k , the analog is

k ·□ ln ρ = □2Φ/ℏ, (285)

where, of course, ρ is the path density for photons, just as it
is for electrons. Accordingly, we conclude that diffraction is
‘caused’ by the vacuum surroundingmaterial objects. In other
words, diffraction is refraction by the vacuum!

Strictly speaking, the density (impedance) of the vacuum
should be incorporated into any vector potential by writing
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FIGURE 16. Diffraction mechanism. Vacuum field modes are selected by
the double-slit structure, which in turn guide the electron particle motion.
After [77].

A = ρA, with a new notation to distinguish it from the usual
vector potential, whether or not it is the gradient of a scalar
field. The aether can then be regarded as a conserved fluid
(with □ · A = 0) flowing through spacetime with particle
singularities (electron, photon or whatever) in the density
swept along. This picture has a beautiful macroscopic analog
describing diffraction of a macro particle in a classical fluid
[78].

H. GRAVITO-ELECTROMAGNETISM (GEM)
The relation of gravity to electrodynamics has been a funda-
mental question since the validation of Maxwell’s equation.
Famously, Einstein was inspired by Mach in creating General
Relativity (GR) as a universal theory of gravity but was
greatly disappointed to conclude that GR is incompatible with
Mach’s principle. The possibility that gravity is an inherent
property of the vacuum is given new currency by Dirac’s
proposal (277) that enables us to identify the aether with zilch.
The role of the constant c2 = 1/µϵ is especially noteworthy
as the Blinder ansatz identifies electron mass me = E/c2

with energy stored in the vacuum, while others [79] have
related it to Mach’s principle. How this enables unification
of gravity with electromagnetism (GEM) is thoroughly dis-
cussed by [80]. That can be compared with the more con-
ventional approach to gravity from GR reviewed by [81]. A
formulation Einstein’s gravity compatible with GEM is given
by [82], [83]. This has practical implications for lunar laser
ranging measurements and the behavior of clocks in a global
positioning system as discussed by [84]. A definitive study
of Mach’s principle from a classical point of view has been
given by Assis [85].

I. QUANTUM FORCE AND SUPERCONDUCTIVITY
As depicted in Fig. 3, the electron energy shell is a sphere
with a diameter of a Compton radius 2λe. Consequently,

FIGURE 17. Initial position and velocity of the center of mass and charges
for a bound motion of a two-electron system with parallel spins. The
circles would correspond to the trajectories of the charges if considered
free. The interacting Coulomb force F is computed in terms of the
separation distance between the charges. After [41].

Coulomb repulsion keeps conducting electrons in a metal
separated by that distance under normal conditions. However,
as described in Fig. 17, when neighboring electrons have
parallel spins they can form a resonant state where their
centers are separated by less than 2λe. We emphasize that this
model of a bound electron pair was derived by Martin Rivas
from deep analysis of the Dirac equation with a point particle
interpretation. We propose it as a model for the Cooper pair
in super conductivity theory, and we call the mean separation
of the circulating electrons the Rivas distance.
States where spin currents exist in the absence of external

fields have been thoroughly studied by Jorge Hirsch to de-
scribe the superconducting state of metals [86] and aromatic
molecules [86]. I to refer to work as the Hirsch theory of
superconductivity to distinguish it from BCS theory. In a
subsequent paper I will expand the presentmodel for a Cooper
pair into a unified theory of the Pauli Principle and nuclear
structure.

X. ONTOLOGY CUM EPISTEMOLOGY
When long-standing scientific debates are finally resolved,
it invariably turns out that both sides are correct in positive
assertions about their own position but incorrect in negative
assertions about the opposing position.

The great debate over the interpretation of quantum me-
chanics can be cast as a dialectic between Einstein’s emphasis
on ontology and Bohr’s emphasis on epistemology [87]. This
paper offers a new perspective on the debate by focusing on
the local observables determined by the Dirac wave function.

Since the Dirac equation is a linear differential equation,
the superposition principle can be used to introduce probabil-
ities in initial conditions and construct the wave packets of
standard quantum mechanics with the Born interpretation of
ρ as probability density. This establishes full compatibility
between the Pilot Wave and Born interpretations of Dirac
wave functions.
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A definitive analysis of zitter in the Dirac wave function
was given in Section IVC and proposed as a defining property
of the electron. That shows that zitter can be regarded as
electron phase incorporated in charge oscillations around its
Center ofMass. That completes the description of the electron
in Born-Dirac theory as a particle with intrinsic spin and zitter
in its motion.

Concerning the Born rule for interpreting thewave function
in quantum mechanics: There is no doubt that probability
is essential for interpreting experiments. Indeed, overcoming
the failure of old quantum theory to account for intensities of
spectral lines was one of the first great victories for quantum
mechanics and Born’s rule for statistical interpretation.

Moreover, it comes not to destroy QM but to fulfill! For the
particle model offers an ontic interpretation to QM, while QM
offers an empirically significant way to assign probabilities
to particle states. The particle model provides electron states
with definite position, momentum, spin and (zitter) phase.

The Born rule offers a way to assign probabilities to these
states. However, such probabilities do not imply uncertainties
inherent in Nature as often claimed. Rather, they express lim-
itations in our knowledge and control of specific states, best
described by Bayesian probability theory so ably expounded
by E. T. Jaynes [25], [87].

Of course, the present approach calls for reconsideration of
many arguments and applications of standard quantum me-
chanics, especially those involving zitter and the Heisenberg
uncertainty relations, which are already burdened by many
conflicting interpretations [88].

A new perspective on the great debate on the interpretation
of QM is introduced by incorporating zilch as well as zitter in
our electron model, as is evident in preceding examples.

XI. ACKNOWLEDGEMENT
I dedicate this paper to my good friend Roget Boudet, who
contributed significantly to its development. Roget died on
August 31, 2016 at the age of 88. These remarks serve as an
obituary.

Roget was a fiercely independent and scrupulous fellow,
with a strong social conscience. I know nothing of his early
life, but I believe he worked as a sailor in his youth, and I
know he enjoyed sailing throughout his life. He received his
doctorate in mathematics and held the rank of professor at
Aix-en-Provence in France until his retirement.

Roget told me that his doctoral advisor was the last of the
true experts on ‘classical geometry,’ and spoke of him with
great reverence. Roget continued that work in his thesis, but I
do not know any of the details. On the other hand, Roget could
not avoid a heavy dose of Bourbaki, which was dominant in
French mathematics education, even to the point of naming
the real number line in French schools asRue du Bourbaki. He
studied Bourbaki with due respect but maintained his natural
skepticism born of his schooling in classical geometry. That
helped him develop proficiencywith the complex calculations
in quantum electrodynamics that he studied diligently over
many years. Taking nothing for granted, he worked out every

FIGURE 18. Roget Boudet (1928–2016) French mathematician and
incorruptible scholar in the classical tradition.

detail for himself. That makes his published books [30], [89]
uniquely valuable, especially as a context and background for
the present article.
Roget was the first person to understand and appreciate my

original paper on real Dirac theory in 1967 [8]. He was so
impressed that he immediately flew from France to my home
in Arizona to visit me. Then he hosted me and my family in
France during my sabbatical in 1973.
Thereafter, Roget continued to serve for the rest of his life

as a devoted apostle for Space Time Algebra in the French
mathematics community, though conversion proved to be as
difficult in France as the rest of the world. The slow diffusion
of STA and Geometric Algebra in the scientific community
is described in [90]. It is most gratifying that Roget indepen-
dently reworked my papers on the electron in his own way
over many decades, thereby giving independent support for
the main ideas.
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